Skip to main content
Log in

Influence of nanofibers on the growth and osteogenic differentiation of stem cells: a comparison of biological collagen nanofibers and synthetic PLLA fibers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to compare biological collagen I (ColI) and synthetic poly-(l-lactide) (PLLA) nanofibers concerning their stability and ability to promote growth and osteogenic differentiation of human mesenchymal stem cells in vitro. Matrices were seeded with human stem cells and cultivated over a period of 28 days under growth and osteoinductive conditions and analyzed during the course. During this time the PLLA nanofibers remained stable while the presence of cells resulted in an attenuation of the ColI nanofiber mesh. Although there was a tendency for better growth and osteoprotegerin production of stem cells when cultured on collagen nanofibers, there was no significant difference compared to PLLA nanofibers or controls. The gene expression of alkaline phosphate, osteocalcin and collagen I diminished in the initial phase of cultivation independent of the polymer used. In the case of PLLA fibers, this gene expression normalized during the course of cultivation, whereas the presence of collagen nanofibers resulted in an increased gene expression of osteocalcin and collagen during the course of the experiment. Taken together the PLLA fibers were easier to produce, more stable and did not compromise growth and differentiation of stem cells over the course of experiment. On the other hand, collagen nanofibers supported the differentiation process to some extent. Nevertheless, the need for fixation as well as the missing stability during cell culture requires further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Ashammakhi, A. Ndreu,Y. Yang, H. Ylikauppila, L. Nikkola, Eur. J. Plast. Surg. (2008) online first

  2. Y. Zhang, C.T. Lim, S. Ramakrishna, Z.M. Huang, J. Mater. Sci. Mater. Med. 16, 933–946 (2005). doi:10.1007/s10856-005-4428-x

    Article  PubMed  CAS  Google Scholar 

  3. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, J. Biomed. Mater. Res. 60, 613–621 (2002). doi:10.1002/jbm.10167

    Article  PubMed  CAS  Google Scholar 

  4. S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, S. Ramakrishna, J. Biomed. Mater. 1, R45–R53 (2006). doi:10.1088/1748-6041/1/3/R01

    Article  ADS  CAS  Google Scholar 

  5. H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata, Biomaterials 27, 4079–4086 (2006). doi:10.1016/j.biomaterials.2006.03.030

    Article  PubMed  CAS  Google Scholar 

  6. H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata, Biomaterials 27, 5089–5098 (2006). doi:10.1016/j.biomaterials.2006.05.050

    Article  PubMed  CAS  Google Scholar 

  7. X. Xin, M. Hussain, J.J. Mao, Biomaterials 28, 316–325 (2007). doi:10.1016/j.biomaterials.2006.08.042

    Article  PubMed  CAS  Google Scholar 

  8. Y.R. Shih, C.N. Chen, S.W. Tsai, Y.J. Wang, O.K. Lee, Stem Cells 24, 2391–2397 (2006). doi:10.1634/stemcells.2006-0253

    Article  PubMed  CAS  Google Scholar 

  9. Y. Takahashi, M. Yamamoto, Y. Tabata, Biomaterials 26, 3587–3596 (2005). doi:10.1016/j.biomaterials.2004.09.046

    Article  PubMed  CAS  Google Scholar 

  10. W.J. Li, J.A. Cooper Jr, R.L. Mauck, R.S. Tuan, Acta Biomater. 2, 377–385 (2006). doi:10.1016/j.actbio.2006.02.005

    Article  PubMed  Google Scholar 

  11. W.J. Li, R. Tuli, C. Okafor, A. Derfoul, K.G. Danielson, D.J. Hall, R.S. Tuan, Biomaterials 26, 599–609 (2005). doi:10.1016/j.biomaterials.2004.03.005

    Article  PubMed  CAS  Google Scholar 

  12. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. 46, 5670–5703 (2007). doi:10.1002/anie.200604646

    Article  CAS  Google Scholar 

  13. K. Tuzlakoglu, N. Bolgen, A.J. Salgado, M.E. Gomes, E. Piskin, R.L. Reis, J. Mater. Sci. Mater. Med. 16, 1099–1104 (2005). doi:10.1007/s10856-005-4713-8

    Article  PubMed  CAS  Google Scholar 

  14. H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, Biomaterials 24, 2077–2082 (2003). doi:10.1016/S0142-9612(02)00635-X

    Article  PubMed  CAS  Google Scholar 

  15. U. Boudriot, B. Goetz, R. Dersch, A. Greiner, H.J. Wendorff, Macromol. Symp. 225, 9–16 (2005). doi:10.1002/masy.200550702

    Article  CAS  Google Scholar 

  16. U. Boudriot, R. Dersch, B. Goetz, P. Griss, A. Greiner, J.H. Wendorff, Biomed. Tech. 49, 242–247 (2004). doi:10.1515/BMT.2004.046

    Article  CAS  Google Scholar 

  17. J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Biomacromolecules 3, 232–238 (2002). doi:10.1021/bm015533u

    Article  PubMed  CAS  Google Scholar 

  18. K.S. Weadock, E.J. Miller, L.D. Bellincampi, J.P. Zawadsky, M.G. Dunn, J. Biomed. Mater. Res. 29, 1373–1379 (1995). doi:10.1002/jbm.820291108

    Article  PubMed  CAS  Google Scholar 

  19. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Science 284, 143–147 (1999). doi:10.1126/science.284.5411.143

    Article  PubMed  ADS  CAS  Google Scholar 

  20. C. Brendel, L. Kuklick, O. Hartmann, T.D. Kim, U. Boudriot, D. Schwell, A. Neubauer, Gene Expr. 12, 245–257 (2005). doi:10.3727/000000005783992043

    Article  PubMed  CAS  Google Scholar 

  21. N. Jaiswal, S.E. Haynesworth, A.I. Caplan, S.P. Bruder, J. Cell Biochem. 64, 295–312 (1997). doi :10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  22. O. Frank, M. Heim, M. Jakob, A. Barbero, D. Schafer, I. Bendik, W. Dick, M. Heberer, I. Martin, J Cell Biochem 85, 737–746 (2002). doi:10.1002/jcb.10174

    Article  PubMed  CAS  Google Scholar 

  23. I. Martin, M. Jakob, D. Schafer, W. Dick, G. Spagnoli, M. Heberer, Osteoarthritis Cartilage 9, 112–118 (2001). doi:10.1053/joca.2000.0366

    Article  PubMed  CAS  Google Scholar 

  24. Z. Jun, H.Q. Hou, A. Schaper, J.H. Wendorff, A. Greiner, E-Polymers (2003)

  25. J.R. Venugopal, Y. Zhang, S. Ramakrishna, Artif. Organs 30, 440–446 (2006). doi:10.1111/j.1525-1594.2006.00239.x

    Article  PubMed  CAS  Google Scholar 

  26. J. Venugopal, L.L. Ma, T. Yong, S. Ramakrishna, Cell Biol. Int. 29, 861–867 (2005). doi:10.1016/j.cellbi.2005.03.026

    Article  PubMed  CAS  Google Scholar 

  27. R.M. Salasznyk, W.A. Williams, A. Boskey, A. Batorsky, G.E. Plopper, J. Biomed. Biotechnol. 1, 24–34 (2004). doi:10.1155/S1110724304306017

    Google Scholar 

  28. M. Mizuno, Y. Kuboki, J. Biochem. 129, 133–138 (2001)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation, Grant No. BO 3065/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Dietmar Schofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schofer, M.D., Boudriot, U., Wack, C. et al. Influence of nanofibers on the growth and osteogenic differentiation of stem cells: a comparison of biological collagen nanofibers and synthetic PLLA fibers. J Mater Sci: Mater Med 20, 767–774 (2009). https://doi.org/10.1007/s10856-008-3634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3634-8

Keywords

Navigation