Skip to main content

Advertisement

Log in

Synthesis of a “clickable” Angiopep-conjugated p-coumaric acid for brain-targeted delivery

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Overexpression of free radicals in the brain is emerging as important markers in the etiology of neurodegenerative diseases including Parkinson’s disease, Alzheimer’s disease, and stroke. Numerous antioxidants with protective effect on neuronal injuries under oxidative stress are often limited to penetrate the blood–brain barrier (BBB). Angiopep-2 is the ligand of low-density lipoprotein receptor-related protein expressed on the BBB possessing high transcytosis capacity and parenchymal accumulation. In this study, novel Angiopep-conjugated p-coumaric acid (3) was synthesized, using the Click chemistry, as a potential antioxidant for the protection of the brain under oxidative stress. The clickable Angiopep (3) was synthesized by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction of the terminal acetylene-modified Angiopep and azide of p-coumaric acid. The Angiopep-conjugated compound (3) showed antioxidant potency and non-cytotoxic effect toward brain endothelial cells (BECs). Obviously, the penetration and BECs protection of 3 were higher than that of the unconjugated p-coumaric acid. The results establish the bio-conjugation of antioxidant and Angiopep with enhanced protective effect on the BECs under oxidative stress. The findings provide great potential for the development of neurotherapeutics with increased brain penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Domínguez A, Álvarez A, Hilario E, Suarez-Merino B, Goñi-de-Cerio F (2013) Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci Deliv 1:1–11. doi:10.7243/2052-6946-1-3

    Google Scholar 

  2. Loenneke JP, Pujol TJ (2011) Sarcopenia: an emphasis on occlusion training and dietary protein. Hippokratia 15:132–137

    Google Scholar 

  3. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975. doi:10.1016/S0028-3908(01)00019-3

    Article  Google Scholar 

  4. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214. doi:10.1016/j.biopha.2003.11.004

    Article  Google Scholar 

  5. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. doi:10.2174/157015909787602823

    Article  Google Scholar 

  6. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104. doi:10.1007/s11010-010-0563-x

    Article  Google Scholar 

  7. Patten DA, Germain M, Kelly MA, Slack RS (2010) Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis 20:S357–S367. doi:10.3233/JAD-2010-100498

    Google Scholar 

  8. Abd El Mohsen MM, Kuhnle G, Rechner AR, Schroeter H, Rose S, Jenner P, Rice-Evans CA (2002) Uptake and metabolism of epicatechin and its access to the brain after oral ingestion. Free Radic Biol Med 33:1693–1702. doi:10.1016/S0891-5849(02)01137-1

    Article  Google Scholar 

  9. Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosc. 8:111–120. doi:10.1080/10284150500078117

    Article  Google Scholar 

  10. Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MBH (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234. doi:10.1002/mnfr.200500156

    Article  Google Scholar 

  11. Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s Disease. Neurochem Res 33:2390–2400. doi:10.1007/s11064-008-9696-7

    Article  Google Scholar 

  12. Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY (2002) Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958:439–447. doi:10.1016/S0006-8993(02)03543-6

    Article  Google Scholar 

  13. Lee SJ, Mun GI, An SM, Boo YC (2009) Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid. BMB Rep 42:561–567

    Article  Google Scholar 

  14. Banks WA (2012) Drug delivery to the brain in Alzheimer’s disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 64:629–639. doi:10.1016/j.addr.2011.12.005

    Article  Google Scholar 

  15. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61. doi:10.1016/j.drudis.2006.10.013

    Article  Google Scholar 

  16. Jones AR, Shusta EV (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771. doi:10.1007/s11095-007-9379-0

    Article  Google Scholar 

  17. Demeule M, Regina A, Ché C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Béliveau R (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072. doi:10.1124/jpet.107.131318

    Article  Google Scholar 

  18. Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, Gabathuler R, Castaigne JP, Béliveau R (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem 106:1534–1544. doi:10.1111/j.1471-4159.2008.05492.x

    Article  Google Scholar 

  19. Che C, Yang G, Thiot C, Lacoste MC, Currie JC, Demeule M, Regina A, Beliveau R, Castaigne JP (2010) New Angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J Med Chem 53:2814–2824. doi:10.1021/jm9016637

    Article  Google Scholar 

  20. Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C (2009) Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:6976–6985. doi:10.1016/j.biomaterials.2009.08.049

    Article  Google Scholar 

  21. Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C (2010) Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 147:118–126. doi:10.1016/j.jconrel.2010.06.018

    Article  Google Scholar 

  22. Shen J, Zhan C, Xie C, Meng Q, Gu B, Li C, Zhang Y, Lu W (2011) Poly(ethylene glycol)-block-poly(d, l-lactide acid) micelles anchored with Angiopep-2 for brain-targeting delivery. J Drug Target 19:197–203. doi:10.3109/1061186X.2010.483517

    Article  Google Scholar 

  23. Van Rooy I, Mastrobattista E, Storm G, Hennink WE, Schiffelers RM (2011) Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release 150:30–36. doi:10.1016/j.jconrel.2010.11.014

    Article  Google Scholar 

  24. Kurzrock R, Gabrail N, Chandhasin C, Moulder S, Smith C, Brenner A, Sankhala K, Mita A, Elian K, Bouchard D, Sarantopoulos (2012) Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of Angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. J Mol Cancer Ther 11:308–316. doi:10.1158/1535-7163.MCT-11-0566

    Article  Google Scholar 

  25. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem-Int Ed 40:2004–2021. doi:10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5

    Article  Google Scholar 

  26. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem-Int Ed 41:2596–2599. doi:10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4

    Article  Google Scholar 

  27. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1–3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. doi:10.1021/jo011148j

    Article  Google Scholar 

  28. Becer CR, Hoogenboom R, Schubert U (2009) Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem-Int Edit 48:4900–4908. doi:10.1002/anie.200900755

    Article  Google Scholar 

  29. Best MD (2009) Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 48:6571–6584. doi:10.1021/bi9007726

    Article  Google Scholar 

  30. Kurpiers T, Mootz HD (2009) Bioorthogonal ligation in the spotlight. Angew Chem-Int Ed 48:1729–1731. doi:10.1002/anie.200805454

    Article  Google Scholar 

  31. Suksrichavalit T, Yoshimatsu K, Prachayasittikul V, Bulow L, Ye L (2010) “Clickable” affinity ligands for effective separation of glycoproteins. J Chromatogr A 1217:3635–3641. doi:10.1016/j.chroma.2010.03.050

    Article  Google Scholar 

  32. Gao C, He H, Zhou L, Zheng X, Zhang Y (2008) Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem Mat 21:360–370. doi:10.1021/cm802704c

    Article  Google Scholar 

  33. Landi F, Johansson CM, Campopiano DJ, Hulme AN (2010) Synthesis and application of a new cleavable linker for “click”-based affinity chromatography. Org Biomol Chem 8:56–59. doi:10.1039/B916693A

    Article  Google Scholar 

  34. Chan JW, Hoyle CE, Lowe AB (2009) Sequential phosphine-catalyzed, nucleophilic thiol-ene/radical-mediated thiol-yne reactions and the facile orthogonal synthesis of polyfunctional materials. J Am Chem Soc 131:5751–5753. doi:10.1021/ja8099135

    Article  Google Scholar 

  35. Treeratanapiboon L, Worachartcheewan A, Suksrichavalit T, Kiatfuengfoo R, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2011) Bioactive 4-hydroxycinnamide and bioactivities of Polyalthia Cerasoides. Excli J 10:16–22

    Google Scholar 

  36. Croce N, Bernardini S, Di Cecca S, Caltagirone C, Angelucci F (2013) Hydrochloric acid alters the effect of l-glutamic acid on cell viability in human neuroblastoma cell cultures. J Neurosci Methods 217:26–30. doi:10.1016/j.jneumeth.2013.04.009

    Article  Google Scholar 

  37. Lv W, Liu L, Luo Y, Wang X, Liu Y (2011) Biotinylated thermoresponsive core cross-linked nanoparticles via RAFT polymerization and “click” chemistry. J Colloid Interface Sci 356:16–23. doi:10.1016/j.jcis.2011.01.005

    Article  Google Scholar 

  38. Karamać M, Kosińska A, Pegg RB (2005) Comparison of radical-scavenging activities for selected phenolic acids. Pol J Food Nutr Sci 14:165–170

    Google Scholar 

  39. Tabner BJ, Turnbull S, El-Agnaf OM, Allsop D (2002) Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic Biol Med 32:1076–1083. doi:10.1016/S0891-5849(02)00801-8

    Article  Google Scholar 

  40. Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031. doi:10.1152/ajpheart.01283.2006

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Faculty of Medical Technology, Mahidol University for facilities and supports. This research project is supported by Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virapong Prachayasittikul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suksrichavalit, T., Prachayasittikul, S., Isarankura Na Ayudhya, C. et al. Synthesis of a “clickable” Angiopep-conjugated p-coumaric acid for brain-targeted delivery. J Mater Sci 49, 8204–8213 (2014). https://doi.org/10.1007/s10853-014-8529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8529-0

Keywords

Navigation