Skip to main content

Advertisement

Log in

Microstructure and microtexture in pure copper processed by high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The evolution of microstructure and microtexture in high purity copper was examined after processing by high-pressure torsion (HPT). Copper disks were annealed for 1 h at 800 °C and later processed monotonously in HPT at ambient temperature for 1/4, 1/2, 1, and 5 turns under a pressure of 6.0 GPa. Electron backscattered diffraction (EBSD) measurements were taken for each disk at three positions: center, mid-radius, and near-edge. Results from EBSD for samples processed between 1/4 and 1 turn indicate the formation of Σ3 twin boundaries by recrystallization before complete microstructural refinement. The results show a gradual increase in the homogeneity of the microstructure with increasing numbers of turns, reaching a stabilized ultrafine-grained structure at 5 turns with a bimodal distribution of fine and coarse grains of 0.15 and 0.5 μm in diameter, respectively. The occurrence of recrystallization in the early straining stages was further supported by examining microtexture development with increasing numbers of turns, where this shows a gradual transition from a shear texture to a mixture of shear and recrystallization and later to a shear texture at high HPT strains. The promotion of recrystallization during HPT is probably related to the high purity of the copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  2. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  3. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  4. Horita Z, Langdon TG (2005) Mater Sci Eng A 410–411:422

    Google Scholar 

  5. Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Mater Sci Eng A 290:128

    Article  Google Scholar 

  6. Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393

    Article  CAS  Google Scholar 

  7. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A 497:168

    Article  Google Scholar 

  8. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scripta Mater 63:560

    Article  CAS  Google Scholar 

  9. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Mater Sci Eng A 477:366

    Article  Google Scholar 

  10. Zhilyaev AP, Langdon TG (2012) J Mater Sci 47:7888. doi:10.1007/s10853-012-6429-8

    Article  CAS  Google Scholar 

  11. Orlov D, Bhattacharjee P, Todaka Y, Umemoto M, Tsuji N (2009) Scripta Mater 60:893

    Article  CAS  Google Scholar 

  12. Enikeev NA, Schafler E, Zehetbauer MJ, Alexandrov IV, Valiev RZ (2008) Mater Sci Forum 584:367

    Article  Google Scholar 

  13. Alexandrov I, Zhilina M, Bonarski J (2006) Bull Pol Acad Sci 54:199

    CAS  Google Scholar 

  14. Hafok M, Vorhauer A, Keckes J, Pippan R (2006) Mater Sci Forum 503:621

    Article  Google Scholar 

  15. Bonarski B, Schafler E, Mingler B, Skrotzki W, Mikulowski B, Zehetbauer M (2008) J Mater Sci 43:7513. doi:10.1007/s10853-008-2794-8

    Article  CAS  Google Scholar 

  16. Bonarski B, Schafler E, Mikulowski B, Zehetbauer M (2010) J Phys: conference series, ICSMA-15, 240:012133

  17. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi:10.1007/s10853-006-0628-0

    Article  CAS  Google Scholar 

  18. Zhilyaev AP, Swaminathan S, Gimazov AA, McNelley TR, Langdon TG (2008) J Mater Sci 43:7451. doi:10.1007/s10853-008-2714-y

    Article  CAS  Google Scholar 

  19. Zhang HW, Huang X, Pippan R, Hansen N (2010) Acta Mater 58:1698

    Article  CAS  Google Scholar 

  20. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A A528:8198

    Google Scholar 

  21. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190

    Article  CAS  Google Scholar 

  22. Humphreys FJ (1999) J Microsc 195:170

    Article  CAS  Google Scholar 

  23. Korznikova EA, Mironov SY, Korznikov AV, Zhilyaev AP, Langdon TG (2012) Mater Sci Eng A 556:437

    Article  CAS  Google Scholar 

  24. Humphreys FJ, Prangnell PB, Bowen JR, Gholinia A, Harris C (1999) Philos Trans R Soc Lond A 357:1663

    Article  CAS  Google Scholar 

  25. Montheillet F, Gilormini P, Jonas JJ (1985) Acta Metal 33:705

    Article  CAS  Google Scholar 

  26. Cho J-H, Dawson P (2006) Metall Mater Trans A 37:1147

    Article  Google Scholar 

  27. Li S, Beyerlein IJ, Bourke MA (2005) Mater Sci Eng A 394:66

    Article  Google Scholar 

  28. Suwas S, Tóth LS, Fundenberger J-J, Eberhardt A, Skrotzki W (2003) Scripta Mater 49:1203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by Kuwait University General Facility (Grant No. GE 01/07) for sample preparation and EBSD measurements. The work of one of us was supported by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled J. Al-Fadhalah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Fadhalah, K.J., Alhajeri, S.N., Almazrouee, A.I. et al. Microstructure and microtexture in pure copper processed by high-pressure torsion. J Mater Sci 48, 4563–4572 (2013). https://doi.org/10.1007/s10853-013-7200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7200-5

Keywords

Navigation