Skip to main content
Log in

Effect of annealing atmosphere (Ar vs. air) and temperature on the electrical and optical properties of spin-coated colloidal indium tin oxide films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Colloidal indium tin oxide (ITO) ~6 nm nanoparticles synthesized in-house were deposited by spin coating on fused silica substrates, resulting in high resistivity films due to the presence of passivating organics. These films were annealed at various temperatures ranging from 150 to 750 °C in air and argon atmospheres. The films are very transparent in the as-coated form, and they retain high transparency upon annealing, except the films annealed at 300 °C in argon, which became brown due to incomplete pyrolysis of the organics. Thermogravimetric analysis and Raman characterization showed that the removal of organics increases with an increase in the annealing temperature, and that this removal is more efficient in the oxidizing atmosphere of air, especially in the 300–450 °C temperature range than in Ar. Although ITO defect chemistry suggests that argon annealing should result in higher carrier concentration than air annealing, the faster removal of insulating organics upon annealing in air resulted in significantly lower film resistivity at intermediate annealing temperatures for films annealed in air than in Ar. At higher annealing temperatures, both Ar and air annealing, resulted in comparable film resistivities (the lowest achieved was ~10Ω cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hamberg I, Granqvist CG (1986) J Appl Phys 60(11):R123

    Article  CAS  Google Scholar 

  2. Edwards PP, Porch A, Jones MO, Morgan DV, Perks RM (2004) Dalton Trans 19:2995. doi:10.1039/b408864f

    Article  Google Scholar 

  3. Chopra KL, Major S, Pandya DK (1983) Thin Solid Films 102:1

    Article  CAS  Google Scholar 

  4. Minami T, Kuboi T, Miyata T, Ohtani Y (2008) Phys Status Solidi A-Appl Mat 205(2):255. doi:10.1002/pssa.200622541

    Article  CAS  Google Scholar 

  5. Gordon RG (2000) MRS Bull 25(8):52

    Article  CAS  Google Scholar 

  6. Lewis BG, Paine DC (2000) MRS Bull 25(8):22

    Article  CAS  Google Scholar 

  7. Shigesato Y, Paine DC (1993) Appl Phys Lett 62(11):1268

    Article  CAS  Google Scholar 

  8. Izumi H, Ishihara T, Yoshioka H, Motoyama M (2002) Thin Solid Films 411(1):32

    Article  CAS  Google Scholar 

  9. Hong HS, Jung H, Hong S-J (2010) Res Chem Intermed 36(6–7):761

    Article  CAS  Google Scholar 

  10. Matthews S, De Bosscher W, Blondeel A, Van Holsbeke J, Delrue H (2008) Vacuum 83(3):518. doi:10.1016/j.vacuum.2008.04.065

    Article  CAS  Google Scholar 

  11. Straue N, Rauscher M, Walther S, Faber H, Roosen A (2009) J Mater Sci 44(22):6011. doi:10.1007/s10853-009-3804-1

    Article  CAS  Google Scholar 

  12. Yin Y, Zhou S, Gu G, Wu L (2007) J Mater Sci 42(15):5959. doi:10.1007/s10853-006-1133-1

    Article  CAS  Google Scholar 

  13. Carotenuto G, Valente M, Sciume G, Valente T, Pepe G, Ruototo A, Nicolais L (2006) J Mater Sci 41(17):5587. doi:10.1007/s10853-006-0253-y

    Article  CAS  Google Scholar 

  14. Capozzi CJ, Ivanov IN, Joshi S, Gerhardt RA (2009) Nanotechnology 20(14):145701

    Article  Google Scholar 

  15. Joshi SM, Book GW, Gerhardt RA (2012) Thin Solid Films 520(7):2723. doi:10.1016/j.tsf.2011.11.052

    Article  CAS  Google Scholar 

  16. Gehl B, Fromsdorf A, Aleksandrovic V, Schmidt T, Pretorius A, Flege JI, Bernstorff S, Rosenauer A, Falta J, Weller H, Baumer M (2008) Adv Funct Mater 18(16):2398

    Article  CAS  Google Scholar 

  17. Robbins LA, Cusak RW (1997) In: Perry RH, Green DW (eds) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York, p 15.11

  18. AIST:RIO-DB Spectral Database for Organic Compounds, SDBS. (2011) http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

  19. Sigma-Aldrich.com. http://www.sigmaaldrich.com

  20. Plot Digitizer. http://plotdigitizer.sourceforge.net/

  21. Smith E, Dent G (2006) Modern Raman spectroscopy: a practical approach. Wiley, West Sussex

    Google Scholar 

  22. 1-Octadecene (alpha-olefin C18) (2012) http://www.chemicalland21.com/industrialchem/organic/1-OCTADECENE.htm

  23. Ferrari AC, Robertson J (2000) Phys Rev B 61(20):14095

    Article  CAS  Google Scholar 

  24. Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) J Appl Phys 80(1):440. doi:10.1063/1.362745

    Article  CAS  Google Scholar 

  25. Gerhardt RA (2005) In: Liedl G, Wyder P, Bassani G (eds) Encyclopedia of condensed matter physics. Elsevier, Oxford, p 350

    Chapter  Google Scholar 

  26. Frank G, Köstlin H (1982) Appl Phys A 27(4):197

    Article  Google Scholar 

  27. Gonzalez GB, Mason TO, Quintana JP, Warschkow O, Ellis DE, Hwang JH, Hodges JP, Jorgensen JD (2004) J Appl Phys 96(7):3912

    Article  CAS  Google Scholar 

  28. Hamberg I, Granqvist CG, Berggren KF, Sernelius BE, Engström L (1984) Phys Rev B 30(6):3240

    Article  CAS  Google Scholar 

  29. Nadaud N, Lequeux N, Nanot M, Jove J, Roisnel T (1998) J Solid State Chem 135(1):140

    Article  CAS  Google Scholar 

  30. Warschkow O, Ellis DE, Gonzalez GB, Mason TO (2003) J Am Chem Soc 86(10):1700

    CAS  Google Scholar 

  31. Warschkow O, Ellis DE, Gonzalez GB, Mason TO (2003) J Am Chem Soc 86(10):1707

    CAS  Google Scholar 

  32. Warschkow O, Miljacic L, Ellis DE, Gonzalez G, Mason TO (2006) J Am Chem Soc 89(2):616

    CAS  Google Scholar 

  33. Sahimi M (1994) In: Applications of percolation theory. Taylor & Francis, London

  34. Kim H-S, Dhage SR, Shim D-E, Hahn HT (2009) Appl Phys A 97(4):791

    Article  CAS  Google Scholar 

  35. Schroder KA, McCool SC, Furlan WF (2006) In: 2006 NSTI nanotechnology conference and trade show, Boston, MA, 2006. NSTI Nanotech 2006 Technical Proceedings. Nano Science and Technology Institute, p 198

  36. Ito T, Iinuma T, Murakoshi A, Akutsu H, Suguro K, Arikado T, Okumura K, Yoshioka M, Owada T, Imaoka Y, Murayama H, Kusuda T (2002) Jpn J Appl Phys Pt 1(41):2394

    Article  Google Scholar 

  37. Delmdahl R, Fechner B (2010) Appl Phys A 101(2):283

    Article  Google Scholar 

  38. Huang W, El-Sayed MA (2008) Eur Phys J Spec Top 153(1):223

    Article  Google Scholar 

  39. Sameshima T (2009) Appl Phys A 96(1):137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge and thank Joseph Dorsheimer and Alexander Rhzevskii of Thermo Scientific, Inc. for their help with Raman characterization of these films. Sarang Deodhar of Georgia Tech assisted with the TGA characterization. Funding from the Institute of Paper Science & Technology Alumni Association Scholarship Endowment Fund at Georgia Tech and partial support from the US Department of Energy under DE-FG 02-03-ER 46035 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario A. Gerhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S.M., Gerhardt, R.A. Effect of annealing atmosphere (Ar vs. air) and temperature on the electrical and optical properties of spin-coated colloidal indium tin oxide films. J Mater Sci 48, 1465–1473 (2013). https://doi.org/10.1007/s10853-012-6900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6900-6

Keywords

Navigation