Skip to main content

Advertisement

Log in

Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyetheretherketone (PEEK) and PEEK/Bioglass® coatings were produced on shape memory alloy (NiTi, Nitinol®) wires using electrophoretic deposition (EPD). Best results were achieved with suspensions of PEEK powders in ethanol in the range (1–6 wt%), using a deposition time of 5 minutes and applied voltage of 20 Volts. EPD using these parameters led to high quality PEEK coatings with a homogeneous microstructure along the wire length and a uniform thickness of up to 15 μm without development of cracks or the presence of large voids. Suspensions of PEEK powders in ethanol with addition of Bioglass® particles (0.5–2 wt%) (size < 5 μm) were used to produce PEEK/Bioglass® coatings. Sintering was carried out as a post EPD process in order to densify the coatings and to improve the adhesion of the coatings to the substrate. The sintering temperature was 340 °C, sintering time 20 min and heating rate 300 °C/h. Sintering led to uniform and dense PEEK and PEEK/Bioglass® coatings without any cracks. The bioactive behaviour of PEEK/Bioglass® composite coatings was investigated by immersion in acellular simulated body fluid (SBF) for up to two weeks. As expected, hydroxyapatite crystals formed on the surface of the coated wires after 1 week in SBF, confirming the bioactive character of the coatings. The results have demonstrated for the first time that EPD is a very convenient method to obtain homogeneous and uniform bioactive PEEK and PEEK/Bioglass® coatings on Nitinol® wires for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wintermantel E, Ha S-W (1998) Biokompatible Werkstoffe und Bausweisen, Springer-Verlag, Berlin

    Google Scholar 

  2. Hench LL (1998) J Am Ceram Soc 81(7):1705

    Article  CAS  Google Scholar 

  3. Moritz N, Vedel E, Ylänen H, Jokinen M, Hupa M, Yli-Urpo A (2004) J Mater Sci: Mater Med 15:787

    Article  CAS  Google Scholar 

  4. Silver FH (1994) Biomaterials, medical devices and tissue engineering: An integrated approach, Chapman & Hall, London

    Google Scholar 

  5. Petrovic L, Pohle D, Munstedt H, Rechtenwald T, Schlegel KA, Rupprecht S (2006) J Biomed Sci 13:41

    Article  CAS  Google Scholar 

  6. Ha S-W, Hauert R, Ernst K-H, Wintermantel E (1997) Surface Coating Technol 96:293

    Article  CAS  Google Scholar 

  7. Noiset O, Schneider YJ, MarchandBrynaert J (1997) J Polym Sci Part A. Polym Chem 35:3779

    Article  CAS  Google Scholar 

  8. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R (2002) Biomaterials 23:3871

    Article  CAS  Google Scholar 

  9. Lopez-Esteban S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP (2003) J Eur Ceram Soc 23: 2921

    Article  CAS  Google Scholar 

  10. Castleman LS, Motzkin SM, Alicandri FP et al (1976) J Biomed Mater Res 10(5):695

    Article  CAS  Google Scholar 

  11. El Feninant F, Laroche G, Fiset M, Mantovani D (2002) Adv Eng Mater 4(3):91

    Article  Google Scholar 

  12. Miyazaki S (1999) In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, pp 267–281

  13. Ryhanen J, Niemi E, Serlo W et al (1997) J Biomed Mater Res 35(4):451

    Article  CAS  Google Scholar 

  14. Sarkar P, Nicholson PS (1996) J Am Ceram Soc 79(8):1987

    Article  CAS  Google Scholar 

  15. Boccaccini AR, Zhitomirsky I (2002) Curr Opin Solid State Mater Sci 6: 251

    Article  CAS  Google Scholar 

  16. Wang C, Ma J, Cheng W, Zhang R (2002) Mater Lett 57(1):99

    Article  CAS  Google Scholar 

  17. Zhitomirsky I (2000) Mater Lett 42:262

    Article  CAS  Google Scholar 

  18. Wang R, Hu YX (2003) J Biomed Mater Res Part A 67A(1): 270

    Article  CAS  Google Scholar 

  19. Krause D, Thomas B, Leinenbach C, Eifler D, Minay EJ and Boccaccini AR (2006) Surface Coating Technol 200:4835

    Article  CAS  Google Scholar 

  20. Wang C, Ma J, Cheng W (2003) Surface Coating Technol 173:271

    Article  CAS  Google Scholar 

  21. Memory Metalle GmbH (2005) Selected properties of NiTi. http://www.memory-metalle.de/html/01_start/index_outer_frame.htm/ (accessed November 4, 2005)

  22. Victrex: Passion, Innovation, Performance (2005) Victrex® PEEK™ in the industrial market. http://www.victrex.com/uk/table.asp?id=200 (accessed November 23, 2005)

  23. Chen QZ, Thompson ID, Boccaccini AR (2006) Biomaterials 27: 2414

    Article  CAS  Google Scholar 

  24. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, Nakamura T (1992) J Am Ceram Soc 75(8):2094

    Article  CAS  Google Scholar 

  25. Cerruti M, Greenspan D, Powers K (2005) Biomaterials 26:1665

    Article  CAS  Google Scholar 

  26. Wang M (2003) Biomaterials 24(13):2133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Roether.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccini, A.R., Peters, C., Roether, J.A. et al. Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires. J Mater Sci 41, 8152–8159 (2006). https://doi.org/10.1007/s10853-006-0556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0556-z

Keywords

Navigation