Skip to main content
Log in

Modeling of transport properties of interfacially controlled electroceramics: Application to n-conducting barium titanate

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Grain boundary regions in n-conducting barium titanate (BaTiO3) are re-oxidized during the cooling process after sintering the ceramics in air. The kinetics of this re-oxidation process is determined by rapid transport of oxygen along the grain boundaries and slow (rate-determining) diffusion of cation vacancies from the grain boundaries into the grains until the diffusion process is frozen-in. Based on numerical calculations of frozen-in diffusion profiles of cation vacancies at grain boundary regions for various cooling rates, a modified Schottky-barrier model is introduced in order to calculate the grain boundary resistivity as a function of temperature from the Curie-point up to 900°C. A change of the activation energy at approximately 500°C is predicted owing to an enrichment of holes in the space charge layers at elevated temperatures. The modeling results are compared with experimental data for BaTiO3-based positive temperature coefficient resistors (PTCRs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W. Heywang, J. Am. Ceram. Soc. 47, 484 (1964). doi:10.1111/j.1151-2916.1964.tb13795.x

    Article  CAS  Google Scholar 

  2. W. Heywang, J. Mater. Sci. 6, 1214 (1971). doi:10.1007/BF00550094

    Article  CAS  Google Scholar 

  3. G.H. Jonker, Solid-State Electron. 7, 895 (1964). doi:10.1016/0038-1101(64)90068-1

    Article  CAS  Google Scholar 

  4. B.M. Kulwicki, A.J. Purdes, Ferroelectrics 1, 253 (1970)

    Article  Google Scholar 

  5. H. Ihrig, W. Puschert, J. Appl. Phys. 48, 3081 (1977). doi:10.1063/1.324078

    Article  CAS  Google Scholar 

  6. K. Hayashi, T. Yamamoto, Y. Ikuhara, T. Sakuma, J. Appl. Phys. 86, 2909 (1999). doi:10.1063/1.371140

    Article  CAS  Google Scholar 

  7. W. Preis, A. Bürgermeister, W. Sitte, P. Supancic, Solid State Ion. 173, 69 (2004). doi:10.1016/j.ssi.2004.07.054

    Article  CAS  Google Scholar 

  8. J. Daniels, R. Wernicke, Philips Res. Repts. 31, 544 (1976)

    CAS  Google Scholar 

  9. G.V. Lewis, C.R.A. Catlow, R.E.W. Casselton, J. Am. Ceram. Soc. 68, 555 (1985). doi:10.1111/j.1151-2916.1985.tb11523.x

    Article  CAS  Google Scholar 

  10. Y.-M. Chiang, T. Takagi, J. Am. Ceram. Soc. 73, 3286 (1990). doi:10.1111/j.1151-2916.1990.tb06451.x

    Article  CAS  Google Scholar 

  11. A.B. Alles, V.L. Burdick, J. Am. Ceram. Soc. 76, 401 (1993). doi:10.1111/j.1151-2916.1993.tb03798.x

    Article  CAS  Google Scholar 

  12. M.M. Gallego, A.R. West, J. Appl. Phys. 90, 394 (2001). doi:10.1063/1.1374476

    Article  CAS  Google Scholar 

  13. J. Daniels, K.H. Härdtl, Philips Res. Repts. 31, 489 (1976)

    CAS  Google Scholar 

  14. D.M. Smyth, J. Electroceramics 9, 179 (2002)

    Article  CAS  Google Scholar 

  15. H.-I. Yoo, C.-E. Lee, J. Am. Ceram. Soc. 88, 617 (2005). doi:10.1111/j.1551-2916.2005.00123.x

    Article  CAS  Google Scholar 

  16. W. Preis, W. Sitte, Solid State Ion. 177, 2549 (2006). doi:10.1016/j.ssi.2006.06.003

    Article  CAS  Google Scholar 

  17. R. Wernicke, Philips Res. Repts. 31, 526 (1976)

    CAS  Google Scholar 

  18. W. Preis, W. Sitte, J. Phys. Chem. Solids 66, 1820 (2005). doi:10.1016/j.jpcs.2005.09.047

    Article  CAS  Google Scholar 

  19. W. Preis, W. Sitte, Solid State Ion. 177, 3093 (2006). doi:10.1016/j.ssi.2006.07.053

    Article  CAS  Google Scholar 

  20. G. Rupprecht, R.O. Bell, Phys. Rev. 135, A748 (1964). doi:10.1103/PhysRev.135.A748

    Article  Google Scholar 

  21. J. Maier, Z. Phys. Chem. 219, 35 (2005). doi:10.1524/zpch.219.1.35.55018

    CAS  Google Scholar 

  22. R. Waser, R. Hagenbeck, Acta Mater. 48, 797 (2000). doi:10.1016/S1359-6454(99)00367-5

    Article  CAS  Google Scholar 

  23. A. Bürgermeister, Bulk and Grain Boundary Transport in Perovskite Oxides, PhD thesis (University of Leoben, Austria, 2005)

  24. H. Ihrig, J. Phys, C. Solid State Phys. 9, 3469 (1975). doi:10.1088/0022-3719/9/18/013

    Article  Google Scholar 

  25. C.J. Johnson, Appl. Phys. Lett. 7, 221 (1965). doi:10.1063/1.1754387

    Article  CAS  Google Scholar 

  26. H.-I. Yoo, C.-R. Song, D.-K. Lee, J. Electroceramics 8, 5 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank A. Bürgermeister for performing the impedance measurements. Financial support by the Austrian Federal Government and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgesellschaft mbH and Steirische Wirtschaftsförderungsgesellschaft mbH, within the research activities of the K2 Competence Centre on “Integrated Research in Materials, Processing and Product Engineering”, operated by the Materials Center Leoben Forschung GmbH under the frame of the Austrian COMET Competence Centre Programme, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Preis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preis, W., Sitte, W. Modeling of transport properties of interfacially controlled electroceramics: Application to n-conducting barium titanate. J Electroceram 27, 83–88 (2011). https://doi.org/10.1007/s10832-009-9577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9577-8

Keywords

Navigation