Skip to main content

Advertisement

Log in

Hydrostatic pressure effect on lattice thermal conductivity of wurtzite GaN semiconductor

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Debye–Callaway model in combination with the Murnaghan and Clapeyron equations was used to calculate the hydrostatic pressure effects on lattice thermal conductivity (LTC) of wurtzite gallium nitride. The calculations are for the longitudinal and transverse phonon modes. The results are efficiently fitted with the whole temperature (1–400) of the experimental data. The peak value of LTC declines with the applied pressure from 0 to 14 GPa. This result is due to the decreasing Debye temperature, group velocity and lattice volume. Furthermore, pressure affected the number of dislocations, sample size and Gruneisen parameter (longitudinal and transverse) modes. Consequently, the values of above parameters at zero GPa are \(2.5\times {10}^{13 }{{\text{m}}}^{-2}, 1.8 {\text{mm}}\), \(0.93 \,{\text{and}}\, 0.52\), whilst the values at 14 GPa are \(15\times {10}^{15}{\mathrm{ m}}^{-2}, 1.68 {\text{mm}},\) \(0.818 \,{\text{and}}\, 0.469\), respectively. The results show that hydrostatic pressure does not affect the number of impurities and electron concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Jiang Y, Cai S, Tao Y, Wei Z, Bi K and Chen Y 2017 Comput. Mater. Sci. 138 419

    Article  CAS  Google Scholar 

  2. Lindsay L, Broido D A and Reinecke T L 2012 Phys. Rev. Lett. 109 095901

    Article  CAS  PubMed  Google Scholar 

  3. Jinlong M, Xin Jiang W, Baoling H and Xiaobing L 2013 J. Appl. Phys. 114 074311

    Article  Google Scholar 

  4. Al-Shaikhi A, Barman S and Srivastava G P 2010 Phys. Rev. B 81 19

    Google Scholar 

  5. Lindsay L and Broido D A 2008 J. Phys. Condens. Matter 20 165209

    Article  Google Scholar 

  6. Sichel E K and Pankove J I 1977 J. Phys. Chem. Solids 38 330

    Article  CAS  Google Scholar 

  7. Slack G A 1973 J. Phys. Chem. Solids 34 321

    Article  CAS  Google Scholar 

  8. Jezowskia A, Danilchenkob B A, Bockowskic M, Grzegoryc I, Krukowskic S, Suskiet T et al 2003 Solid State Commun. 128 69

    Article  Google Scholar 

  9. Morelli D T, Heremans J P and Slack G A 2002 Phys. Rev. B 66 1953041

    Article  Google Scholar 

  10. Zou J, Kotchetkov D, Balandin A A, Florescu D I and Fred H P 2002 J. Appl. Phys. 92 2534

    Article  CAS  Google Scholar 

  11. Garg J, Luo T and Chen G 2018 J. Appl. Phys. 112 25

    Google Scholar 

  12. Yan Z, Zuo Y D, Wen-Pin, Alexander F G and Xiao-Jia C 2022 Nat. Rev. Phys. 4 319

  13. McGaughey A J H, Jain A, Kim H Y and Fu B 2019 J. Appl. Phys. 125 1

    Article  Google Scholar 

  14. Inyushkin A V, Taldenkov A N, Chernodubov D A, Voronenkov V V and Shreter Y G 2020 JETP Lett. 112 106

    Article  CAS  Google Scholar 

  15. Holland M G 1963 Phys. Rev. 132 2461

    Article  CAS  Google Scholar 

  16. Callaway J 1959 Phys. Rev. 113 1046

    Article  CAS  Google Scholar 

  17. Asen-Palmer M, Bartkowski K, Gmelin E, Cardona M, Zhernov P and Inyushkin A V 1997 Phys. Rev. B 56 9431

    Article  CAS  Google Scholar 

  18. Zou J 2010 Appl. Phys. 108 034324

    Article  Google Scholar 

  19. Slack G A and Galginaitis S 1964 Phys. Rev. 133 A253

    Article  Google Scholar 

  20. Klemens P G 1955 Proc. Phys. Soc. 68(12), 1113

    Article  Google Scholar 

  21. Norman E H, Tyler B C, John K B, Lauren V T, Jacqueline B, John R L et al 2018 Pure Appl. Chem. 12 1833

    Google Scholar 

  22. Rosman K J R and Taylor P D P 1998 Pure Appl. Chem. 70 217

    Article  CAS  Google Scholar 

  23. Casimir H B G 1938 Physica 6 495

    Article  Google Scholar 

  24. Zou J and Balandin A 2001 J. Appl. Phys. 89 2932

    Article  CAS  Google Scholar 

  25. Mamand S M, Omar M S and Muhammad A J 2012 Mater. Res. Bull. 47 1264

    Article  CAS  Google Scholar 

  26. Yang C C and Jiang Q 2005 J. Chem. Thermodyn. 37 1019

    Article  CAS  Google Scholar 

  27. Hamarashid M M and Omar M S 2021 Bull. Mater. Sci. 44 14

    Article  Google Scholar 

  28. Karim H H, Omar M S and Nazem I 2022 Phys. B: Phys. Condens. Matter 640 414045

    Article  CAS  Google Scholar 

  29. Jiang Q, Liang L H and Zhao D S 2001 J. Phys. Chem. B 105 6275

    Article  CAS  Google Scholar 

  30. Omar M S 2016 Int. J. Thermophys. 37 11

    Article  Google Scholar 

  31. da Silva J G E C F, Dietl T, Dobrowolski W D, Hönerlage H O B, Matsukura F, Meyer B K et al 2011 Numerical data and functional relationships in science and technology (Berlin, Heidelberg: Springer)

    Google Scholar 

  32. Van Vechten J A 1973 Phys. Rev. B 7 1479

    Article  Google Scholar 

  33. Murnaghan F D 1944 Physics 30 244

    CAS  Google Scholar 

  34. Omar M S, Abdullah B J, Karim A S and Jalal S K 2023 Silicon 15 4049

    Article  CAS  Google Scholar 

  35. Callaway J and von Bayer H C 1960 Phys. Rev. 120 1149

    Article  CAS  Google Scholar 

  36. Karim H H and Omar M S 2020 Bull. Mater. Sci. 43 54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr Hawbash H Karim from the Department of Physics, Faculty of Science and Health, Koya University, Kurdistan Region, Iraq and Mr Ibrahim Nazem Qadir from the College of Science, University of Raparin. Kurdistan Region, for their help and assistance. We would like to thank the College of Science at the University of Salahaddin–Erbil, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diman M Abdullah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, D.M., Omar, M.S. Hydrostatic pressure effect on lattice thermal conductivity of wurtzite GaN semiconductor. Bull Mater Sci 47, 80 (2024). https://doi.org/10.1007/s12034-024-03162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03162-y

Keywords

Navigation