Skip to main content
Log in

Vestibular integrator neurons have quadratic functions due to voltage dependent conductances

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The nonlinear properties of the dendrites of the prepositus hypoglossi nucleus (PHN) neurons are essential for the operation of the vestibular neural integrator that converts a head velocity signal to one that controls eye position. A novel system of frequency probing, namely quadratic sinusoidal analysis (QSA), was used to decode the intrinsic nonlinear behavior of these neurons under voltage clamp conditions. Voltage clamp currents were measured at harmonic and interactive frequencies using specific nonoverlapping stimulation frequencies. Eigenanalysis of the QSA matrix reduces it to a remarkably compact processing unit, composed of just one or two dominant components (eigenvalues). The QSA matrix of rat PHN neurons provides signatures of the voltage dependent conductances for their particular dendritic and somatic distributions. An important part of the nonlinear response is due to the persistent sodium conductance (gNaP), which is likely to be essential for sustained effects needed for a neural integrator. It was found that responses in the range of 10 mV peak to peak could be well described by quadratic nonlinearities suggesting that effects of higher degree nonlinearities would add only marginal improvement. Therefore, the quadratic response is likely to sufficiently capture most of the nonlinear behavior of neuronal systems except for extremely large synaptic inputs. Thus, neurons have two distinct linear and quadratic functions, which shows that piecewise linear + quadratic analysis is much more complete than just piecewise linear analysis; in addition quadratic analysis can be done at a single holding potential. Furthermore, the nonlinear neuronal responses contain more frequencies over a wider frequency band than the input signal. As a consequence, they convert limited amplitude and bandwidth input signals to wider bandwidth and more complex output responses. Finally, simulations at subthreshold membrane potentials with realistic PHN neuron models suggest that the quadratic functions are fundamentally dominated by active dendritic structures and persistent sodium conductances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksay, E., Olasagasti, I., Mensh, B. D., Baker, R., Goldman, M. S., & Tank, D. W. (2007). Functional dissection of circuitry in a neural integrator. Nature Neuroscience, 10, 494–504.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, S., Tang, Y., & Chua, L. (1983). Measuring Volterra kernels. IEEE Transaction on Circuits and Systems, 30, 571–577.

    Article  Google Scholar 

  • Erchova, I., Kreck, G., Heinemann, U., & Herz, A. V. M. (2004). Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. Journal of Physiology (London), 560, 89–110.

    Article  CAS  Google Scholar 

  • Fishman, H. M., Poussart, D. J., Moore, L. E., & Siebenga, E. (1977). K+ conduction description from the low frequency impedance and admittance of squid axon. Journal of Membrane Biology, 32, 255–290.

    Article  PubMed  CAS  Google Scholar 

  • FitzHugh, R. (1983). Sinusoidal voltage clamp of the Hodgkin-Huxley model. Biophysical Journal, 42, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • French, A. S. (1976). Practical nonlinear system analysis by Wiener kernel estimation in the frequency domain. Biological Cybernetics, 24, 111–119.

    Article  Google Scholar 

  • Goldman, M. S., Levine, J. H., Major, G., Tank, D. W., & Seung, H. S. (2003). Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cerebral Cortex, 13, 1185–1195.

    Article  PubMed  Google Scholar 

  • Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine interspike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065.

    Article  PubMed  CAS  Google Scholar 

  • Haas, J. S., Dorval, A. D., 2nd, & White, J. A. (2007). Contributions of Ih to feature selectivity in layer II stellate cells of the entorhinal cortex. Journal of Computational Neuroscience, 22, 161–171.

    Article  PubMed  Google Scholar 

  • Idoux, E., Serafin, M., Fort, P., Vidal, P.-P., Beraneck, M., Vibert, N., et al. (2006). Oscillatory and intrinsic membrane properties of guinea pig nucleus prepositus hypoglossi neurons in vitro. Journal of Neurophysiology, 96, 175–196.

    Article  PubMed  Google Scholar 

  • Idoux, E., Eugène, D., Chambaz, A., Magnani, C., White, J. A., & Moore, L. E. (2008). Control of neuronal persistent activity by voltage-dependent dendritic properties. Journal of Neurophysiology, 100, 1278–1286.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M. (2002). Resonance and selective communication via bursts in neurons having subthreshold oscillations. BioSystems, 67, 95–102.

    Article  PubMed  Google Scholar 

  • Johnston, D., & Narayanan, R. (2008). Active dendrites: colorful wings of the mysterious butterflies. Trends in Neurosciences, 31, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Koulakov, A. A., Raghavachari, S., Kepecs, A., & Lisman, J. E. (2002). Model for a robust neural integrator. Nature Neuroscience, 5, 775–782.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E. R., Henry, K. R., & Yamada, W. M. (2002). Tuning and timing of excitation and inhibition in primary auditory nerve fibers. Hearing Research, 171, 13–31.

    Article  PubMed  Google Scholar 

  • Magnani, C., & Moore, L. E. (2011). Quadratic sinusoidal analysis of voltage clamped neurons. Journal of Computational Neuroscience, 31, 595–607.

    Article  PubMed  Google Scholar 

  • Marmarelis, P. Z., & Naka, K. I. (1973). Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. I. Horizontal cell leads to ganglion cell chain. Journal of Neurophysiology, 36, 605–618.

    PubMed  CAS  Google Scholar 

  • Moore, L. E., Fishman, H. M., & Poussart, D. J. (1980). Small-signal analysis of K+ conduction in squid axons. Journal of Membrane Biology, 54, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Moore, L. E., Chub, N., Tabak, J., & O’Donovan, M. (1999). NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons. Journal of Neuroscience, 19, 8271–8280.

    PubMed  CAS  Google Scholar 

  • Murphey, C. R., Moore, L. E., & Buchanan, J. T. (1995). Quantitative analysis of electrotonic structure and membrane properties of NMDA-activated lamprey spinal neurons. Neural Computation, 7, 486–506.

    Article  PubMed  CAS  Google Scholar 

  • Schetzen, M. (2006). The Volterra and Wiener theories of nonliner systems. [2.] reprint ed. with add. materials. Malabar Fla.: Krieger Publ.

  • Silver, R. A. (2010). Neuronal arithmetic. Nature Reviews Neuroscience, 11, 474–489.

    Article  PubMed  CAS  Google Scholar 

  • Vervaeke, K., Hu, H., Graham, L. J., & Storm, J. F. (2006). Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron, 49, 257–270.

    Article  PubMed  CAS  Google Scholar 

  • Victor, J., & Shapley, R. (1980). A method of nonlinear analysis in the frequency domain. Biophysical Journal, 29, 459–483.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor Hans Straka for helpful comments. This work was supported in part by a grant from the Neuroinformatics Interdisciplinary Program of the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Magnani.

Additional information

Action Editor: Mark Goldman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnani, C., Eugène, D., Idoux, E. et al. Vestibular integrator neurons have quadratic functions due to voltage dependent conductances. J Comput Neurosci 35, 243–259 (2013). https://doi.org/10.1007/s10827-013-0451-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0451-y

Keywords

Navigation