Skip to main content
Log in

Small-signal analysis of K+ conduction in squid axons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The maximum potential displacement that gives a linear K conductance response was determined to be 1 mV (rms) from a voltage-clamp analysis of TTX treated axons. For perturbations below this amplitude the K conductance kinetics are indistinguishable from a first-order rate process. Linearity and order of kinetics were assessed by four types of measurements: (i) the shape of the onset of the potassium current (sigmoidalvs. exponential); (ii) the symmetry of small hyperpolarizing and depolarizing pulses, (iii) wide band admittance, and (iv) harmonic analysis. The simplest interpretation of the results is that the small-signal linear response arises from a first-order gating mechanism, whereas the large-signal conventional voltage-clamp pulse of tens of millivolts evokes nonlinear phenomena. The small-signal results are consistent with the Hodgkin-Huxley description or any other nonlinear model which fits the large signal data and produces a linear first-order response for small perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M., Bezanilla, F. 1977. Inactivation of the sodium channel. I. Sodium current experiments.J. Gen. Physiol. 70:549

    Google Scholar 

  • Cole, K.S., Baker, R.F. 1941. Longitudinal impedance of the squid giant axon.J. Gen. Physiol. 24:535

    Google Scholar 

  • Cole, K., Moore, J.W. 1960 Ionic current measurements in the squid giant axon membrane.Biophys. J. 1:1

    Google Scholar 

  • Eigen, M. 1968. New looks and outlooks on physical enzymology.Q. Rev. Biophys. 1:3

    Google Scholar 

  • Fishman, H.M. 1973. Relaxation spectra of potassium channel noise from squid axon membrane.Proc. Nat. Acad. Sci. USA 70:876

    Google Scholar 

  • Fishman, H.M. 1975. Rapid complex impedance measurements of squid axon membrane via input-output crosscorrelation function.In. Proceedings of the First Symposium on Testing and Identification of Nonlinear Systems. G.D. McCann and P.Z. Marmarelis. editors. pp. 257–274. California Institute of Technology. Pasadena

    Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E., 1979. Complex admittance of Na+ conduction in squid axon.J. Membrane Biol. 50:43

    Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E., Siebenga, E. 1977. K+ conduction description from the low frequency impedence and admittance of squid axon.J. Membrane Biol. 32:255

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L., 1956. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:217

    Google Scholar 

  • Grisell, R., Fishman, H.M. 1979. Analysis of models applicable to the low frequency impedance of squid axon.J. Membrane Biol. 46:1

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500

    Google Scholar 

  • Keynes, R.D., Rojas, E. 1976. The temporal and steady state relationships between activation of the sodium conductance and the movement of gating particles in the squid giant axon.J. Physiol. (London) 255:157

    Google Scholar 

  • Matsumato, N., Inoue, I., Kishimoto, U. 1970. The electric impedance of the squid axon membrane measured between internal and external electrodes.Jpn. J. Physiol. 20:516

    Google Scholar 

  • Moore, L., Holt, J., Lindley, B. 1972. Laser temperature-jump technique for relaxation studies of the ionic conductance in myelinated nerve fiber.Biophys J. 12:157

    Google Scholar 

  • Moore, L.E., Jakobsson, E. 1971. Interpretation of the sodium permeability changes of myelinated nerve in terms of linear relaxation theory.J. Theor. Biol. 33:77

    Google Scholar 

  • Neumcke, B., Nonner, W., Stämpfli, R. 1976. Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve.Pfluegers Arch. 363:193

    Google Scholar 

  • Offner, F.F. 1972. The excitable membrane. A physiochemical model.Biophys. J. 12:1583

    Google Scholar 

  • Palti, Y., Ganot, G., Stämpfli, R. 1976. Effect of conditioning potential on potassium current kinetics in the frog node.Biophys. J. 16:261

    Google Scholar 

  • Poussart, D., Ganguly, U.S. 1977. Rapid measurement of system kinetics-an instrument for real-time transfer function analysis.Proc. IEEE 65:741

    Google Scholar 

  • Poussart, D., Moore, L., Fishman, H. 1977. Ion movements and kinetics in squid axon. I. Complex admittance.Ann. N. Y. Acad. Sci. 303:355

    Google Scholar 

  • Roy, G. 1975. Basic experimental facts on ionic currents in excitable membranes.Prog. Biophys. Mol. Biol. 29:57

    Google Scholar 

  • Stevens, C.F. 1972. Inferences about membrane properties from electrical noise measurements.Biophys. J. 12:1028

    Google Scholar 

  • Van Kampen, N.G. 1965. Fluctuations in nonlinear systems.In: Fluctuation Phenoma in Solids. R.E. Burgess. editor. pp. 139–177. Academic Press. New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, L.E., Fishman, H.M. & Poussart, D.J.M. Small-signal analysis of K+ conduction in squid axons. J. Membrain Biol. 54, 157–164 (1980). https://doi.org/10.1007/BF01940569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01940569

Keywords

Navigation