Skip to main content
Log in

Atomistic deconstruction of current flow in graphene based hetero-junctions

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We describe the numerical modeling of current flow in graphene heterojunctions, within the Keldysh Landauer Non-equilibrium Green’s function (NEGF) formalism. By implementing a k-space approach along the transverse modes, coupled with partial matrix inversion using the Recursive Green’s function Algorithm (RGFA), we can simulate on an atomistic scale current flow across devices approaching experimental dimensions. We use the numerical platform to deconstruct current flow in graphene, compare with experimental results on conductance, conductivity and quantum Hall, and deconstruct the physics of electron ‘optics’ and pseudospintronics in graphene pn junctions. We also demonstrate how to impose exact open boundary conditions along the edges to minimize spurious edge reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  Google Scholar 

  2. Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100(1), 016602 (2008)

    Article  Google Scholar 

  3. Bolotin, K., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Article  Google Scholar 

  4. Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958)

    Article  Google Scholar 

  5. Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2(9), 620–625 (2006)

    Article  Google Scholar 

  6. Cheianov, V.V., Fal’ko, V., Altshuler, B.L.: The focusing of electron flow and a veselago lens in graphene p-n junctions. Science 315(5816), 1252–1255 (2007)

    Article  Google Scholar 

  7. Cserti, J., Pályi, A., Péterfalvi, C.: Caustics due to a negative refractive index in circular graphene p-n junctions. Phys. Rev. Lett. 99, 246801 (2007)

    Article  Google Scholar 

  8. Rakhimov, K.Y., Chaves, A., Farias, G., Peeters, F.: Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers. J. Phys. Condens. Matter 23(27), 275801 (2011)

    Article  Google Scholar 

  9. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Damle, P., Ghosh, A., Datta, S.: Unified description of molecular conduction: from molecules to metallic wires. Phys. Rev. B 64(20), 201403 (2001)

    Article  Google Scholar 

  11. Guo, J., Datta, S., Anantram, M., Lundstrom, M.: Atomistic simulation of carbon nanotube field-effect transistors using non-equilibrium Green’s function formalism. J. Comput. Electron. 3, 373–377 (2004)

    Article  Google Scholar 

  12. Koswatta, S., Hasan, S., Lundstrom, M., Anantram, M., Nikonov, D.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007)

    Article  Google Scholar 

  13. Ouyang, Y., Yoon, Y., Guo, J.: Scaling behaviors of graphene nanoribbon fets: a three-dimensional quantum simulation study. IEEE Trans. Electron Devices 54(9), 2223–2231 (2007)

    Article  Google Scholar 

  14. Tseng, F., Unluer, D., Holcomb, K., Stan, M.R., Ghosh, A.W.: Diluted chirality dependence in edge rough graphene nanoribbon field-effect transistors. Appl. Phys. Lett. 94(22), 223112 (2009)

    Article  Google Scholar 

  15. Low, T., Hong, S., Appenzeller, J., Datta, S., Lundstrom, M.: Conductance asymmetry of graphene p-n junction. IEEE Trans. Electron Devices 56(6), 1292–1299 (2009)

    Article  Google Scholar 

  16. Williams, J.R., Low, T., Lundstrom, M., Marcus, C.: Gate-controlled guiding of electrons in graphene. Nat. Nanotechnol. 6(4), 222–225 (2011)

    Article  Google Scholar 

  17. Sajjad, R.N., Ghosh, A.W.: High efficiency switching using graphene based electron “optics”. Appl. Phys. Lett. 99(12), 123101 (2011)

    Article  Google Scholar 

  18. Sajjad, R.N., Sutar, S., Lee, J.U., Ghosh, A.: Manifestation of chiral tunneling at a tilted graphene p-n junction. Phys. Rev. B 86, 155412 (2012)

    Article  Google Scholar 

  19. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96(4), 2192–2203 (2004)

    Article  Google Scholar 

  20. Bescond, M., Nehari, K., Autran, J., Cavassilas, N., Munteanu, D., Lannoo, M.: 3d quantum modeling and simulation of multiple-gate nanowire mosfets. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 617–620 (2004)

    Chapter  Google Scholar 

  21. Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the sp 3 d 5 s tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B 74, 205323 (2006)

    Article  Google Scholar 

  22. Nehari, K., Cavassilas, N., Michelini, F., Bescond, M., Autran, J.L., Lannoo, M.: Full-band study of current across silicon nanowire transistors. Appl. Phys. Lett. 90(13), 132112 (2007)

    Article  Google Scholar 

  23. Shin, M.: Quantum simulation of device characteristics of silicon nanowire fets. IEEE Trans. Nanotechnol. 6(2), 230–237 (2007)

    Article  Google Scholar 

  24. Sajjad, R.N., Alam, K., Khosru, Q.: Parametrization of a silicon nanowire effective mass model from sp3d5s* orbital basis calculations. Semicond. Sci. Technol. 24, 045023 (2009)

    Article  Google Scholar 

  25. Rocha, A.R., Garcia-suarez, V.M., Bailey, S.W., Lambert, C.J., Ferrer, J., Sanvito, S.: Towards molecular spintronics. Nat. Mater. 4(4), 335–339 (2005)

    Article  Google Scholar 

  26. Salahuddin, S., Datta, S.: Self-consistent simulation of hybrid spintronic devices. In: Electron Devices Meeting, 2006. IEDM ’06. International, pp. 1–4 (2006)

    Chapter  Google Scholar 

  27. Mingo, N., Yang, L.: Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)

    Article  Google Scholar 

  28. Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006)

    Article  Google Scholar 

  29. Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100(20), 206803 (2008)

    Article  Google Scholar 

  30. Galperin, M., Toledo, S., Nitzan, A.: Numerical computation of tunneling fluxes. J. Chem. Phys. 117(23), 10817–10826 (2002)

    Article  Google Scholar 

  31. Svizhenko, A., Anantram, M.P., Govindan, T.R., Biegel, B., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91(4), 2343–2354 (2002)

    Article  Google Scholar 

  32. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81(12), 7845–7869 (1997)

    Article  Google Scholar 

  33. Sutar, S., Comfort, E.S., Liu, J., Taniguchi, T., Watanabe, K., Lee, J.U.: Angle-dependent carrier transmission in graphene p-n junctions. Nano Lett. 12(9), 4460–4464 (2012)

    Article  Google Scholar 

  34. Miao, F., Wijeratne, S., Zhang, Y., Coskun, U.C., Bao, W., Lau, C.N.: Phase-coherent transport in graphene quantum billiards. Science 317(5844), 1530–1533 (2007)

    Article  Google Scholar 

  35. Tan, Y.-W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E.H., Das Sarma, S., Stormer, H.L., Kim, P.: Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99, 246803 (2007)

    Article  Google Scholar 

  36. Chen, J.-H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D., Ishigami, M.: Charged impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008)

    Article  Google Scholar 

  37. Tworzydło, J., Trauzettel, B., Titov, M., Rycerz, A., Beenakker, C.W.J.: Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006)

    Article  Google Scholar 

  38. Katsnelson, M.: Minimal conductivity in bilayer graphene. Eur. Phys. J. B 52(2), 151–153 (2006)

    Article  MathSciNet  Google Scholar 

  39. Wu, Y., Perebeinos, V., Lin, Y.-m., Low, T., Xia, F., Avouris, P.: Quantum behavior of graphene transistors near the scaling limit. Nano Lett. 12(3), 1417–1423 (2012)

    Article  Google Scholar 

  40. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  Google Scholar 

  41. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of img align= absmiddle alt= eps/img and μ. Phys. Usp. 10(4), 509–514 (1968)

    Article  Google Scholar 

  42. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  Google Scholar 

  43. Huard, B., et al.: Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98(23), 236803 (2007)

    Article  Google Scholar 

  44. Stander, N., Huard, B., Goldhaber-Gordon, D.: Evidence for Klein tunneling in graphene p-n junctions. Phys. Rev. Lett. 102, 026807 (2009)

    Article  Google Scholar 

  45. Özyilmaz, B., Jarillo-Herrero, P., Efetov, D., Abanin, D.A., Levitov, L.S., Kim, P.: Electronic transport and quantum hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007)

    Article  Google Scholar 

  46. Young, A.F., Kim, P.: Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5(3), 222–226 (2009)

    Article  Google Scholar 

  47. Cheianov, V.V., Fal’ko, V.I.: Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 74, 041403 (2006)

    Article  Google Scholar 

  48. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  Google Scholar 

  49. Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    Article  Google Scholar 

  50. McCann, E., Fal’ko, V.I.: Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96(8), 086805 (2006)

    Article  Google Scholar 

  51. Williams, J.R., DiCarlo, L., Marcus, C.M.: Quantum hall effect in a gate-controlled p-n junction of graphene. Science 317(5838), 638–641 (2007)

    Article  Google Scholar 

  52. Abanin, D.A., Levitov, L.S.: Quantized transport in graphene p-n junctions in a magnetic field. Science 317(5838), 641 (2007)

    Article  Google Scholar 

  53. Tworzydło, J., Snyman, I., Akhmerov, A.R., Beenakker, C.W.J.: Valley-isospin dependence of the quantum hall effect in a graphene p-n junction. Phys. Rev. B 76, 035411 (2007)

    Article  Google Scholar 

  54. Low, T.: Ballistic-ohmic quantum hall plateau transition in a graphene p-n junction. Phys. Rev. B 80, 205423 (2009)

    Article  MathSciNet  Google Scholar 

  55. Akhmerov, A.R., Bardarson, J.H., Rycerz, A., Beenakker, C.W.J.: Theory of the valley-valve effect in graphene nanoribbons. Phys. Rev. B 77, 205416 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from INDEX-NRI. Redwan Sajjad would like to thank Khairul Alam (EWU) and Golam Rabbani (UW) for the assistance in implementing RGFA. Authors also thank Eugene Kolomeisky (UVA), Branislav Nikolic (UDel), Farzad Mahfouzi (UDel) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redwan N. Sajjad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajjad, R.N., Polanco, C.A. & Ghosh, A.W. Atomistic deconstruction of current flow in graphene based hetero-junctions. J Comput Electron 12, 232–247 (2013). https://doi.org/10.1007/s10825-013-0459-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0459-6

Keywords

Navigation