Skip to main content
Log in

Tunneling of Dirac Electrons in Graphene-Based Junction

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper theoretically investigates the single-particle tunneling current of Dirac electrons in graphene-based junctions. We use the tunneling Hamiltonian approach and strong coupling equations to calculate the single-particle tunneling for three configurations: normal metal-normal metal, normal metal-superconductor, and superconductor-superconductor junctions. Analytical solutions are obtained for the tunneling current by considering the following assumptions and limitations: tunneling primarily involves electrons near the Fermi surface, the system operates at low temperatures, and electron-optical phonon interaction dominates. Notably, our findings reveal that tunneling currents for the normal metal-superconductor and superconductor-superconductor junctions obey the law of conservation of energy and are self-consistent as we take the zero gap limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahan, G.D.: Many-Particle Physics, pp. 798–815. Plenum Publishers, New York (1981)

    Google Scholar 

  2. McMillan, W.L., Rowell, J.M.: Phys. Rev. Lett. 14, 108 (1965)

    Article  ADS  Google Scholar 

  3. Shaw, W., Swihart, J.C.: Phys. Rev. Lett. 20, 1000 (1968)

    Article  ADS  Google Scholar 

  4. Jena, D.: Tunneling transistors based on graphene and 2-D crystals. In Proceedings of the IEEE 101(7), 1585–1602 (2013). https://doi.org/10.1109/JPROC.2013.2253435

    Article  Google Scholar 

  5. Katkov, V.L., Osipov, V.A.: J. Vac. Sci. Technol. B 35, 050801 (2017)

    Article  Google Scholar 

  6. Britnell, L., et al.: Science 335, 947 (2012). https://doi.org/10.1126/science.1218461

    Article  ADS  Google Scholar 

  7. Cao, Y., Fatemi, V., Fang, S., et al.: Nature 556, 43–50 (2018). https://doi.org/10.1038/nature26160

    Article  ADS  Google Scholar 

  8. Peltonen, T.J., Ojajärvi, R., Heikkilä, T.T.: Phys Rev. B 98, 220504(R) (2018)

    Article  ADS  Google Scholar 

  9. Uchoa, B., Castro Neto, A.H.: Phys. Rev. Lett. 98, 146801 (2007)

    Article  ADS  Google Scholar 

  10. Isobe, H., Yuan, N.F.Q., Fu, L.: Phys. Rev. X 8, 041041 (2018)

    Google Scholar 

  11. Lian, B., Wang, Z., Bernevig, B.A.: Phys. Rev. Lett. 122, 257002 (2019)

    Article  ADS  Google Scholar 

  12. Sharma, G., Trushin, M., Sushkov, O.P., Vignale, G., Adam, S.: Phys. Rev. Res. 2, 022040(R) (2020)

    Article  Google Scholar 

  13. Pisarski, R.D., Rischke, D.H.: Phys. Rev. D 60, 094013 (1999)

    Article  ADS  Google Scholar 

  14. Lozovik, Y.E., Ogarkov, S.L., Sokolik, A.A.: J. Exp. Theor. Phys. 110, 49–57 (2010)

    Article  ADS  Google Scholar 

  15. McMillan, W.L.: Phys. Rev. 167, 331 (1968)

    Article  ADS  Google Scholar 

  16. Mahan, G.D.: Many-Particle Physics, 2nd edn., pp. 827–838. Plenum Publishers, New York (1990)

    Book  Google Scholar 

  17. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., Robertson, J.: Phys. Rev. Lett. 93, 185 503 (2004)

  18. Basko, D.M., Aleiner, I.L.: Phys. Rev. B: Condens. Matter 77, 041409(R) (2008)

    Article  ADS  Google Scholar 

  19. Britnell, L., Gorbachev, R.V., Geim, A.K., et al.: Nat. Commun. 4, 1794 (2013). https://doi.org/10.1038/ncomms2817

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their appreciation to the Research, Development, Extension, and Publication Office (RDEPO) of the University of San Carlos for their invaluable support throughout this research endeavor. MJC expresses gratitude for the financial assistance provided by the RDEPO, while DMY acknowledges the support of the University of San Carlos, Talamban Campus. The authors are truly grateful for the resources and opportunities provided by these institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcielow J. Callelero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callelero, M.J., Yanga, D.M. Tunneling of Dirac Electrons in Graphene-Based Junction. J Supercond Nov Magn 36, 1829–1834 (2023). https://doi.org/10.1007/s10948-023-06634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06634-0

Keywords

Mathematics Subject Classification

Navigation