Skip to main content
Log in

Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of a 200 nm Cu2O coating layer on the electrochemical performance of an 800 nm Si thin-film anode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements. The electrochemical performance of the Si thin-film anode was improved by the coating layer. The coated Si anode exhibited higher values of conductivity in comparison with the pristine Si anode. Scanning electron microscopy images of the anodes after cycling test showed that the coated Si anode after cycling test had less cracks than the pristine Si anode. The galvanostatic charge/discharge measurements reveal that the cyclability and rate capability of the coated Si thin-film anode were better than the pristine Si thin-film anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126:2047–2051. doi:10.1149/1.2128859

    Article  CAS  Google Scholar 

  2. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45:67–86. doi:10.1016/S0013-4686(99)00194-2

    Article  CAS  Google Scholar 

  3. Zheng T, Gozdz AS, Amatucci GG (1999) Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures. J Electrochem Soc 146:4014–4018. doi:10.1149/1.1392585

    Article  CAS  Google Scholar 

  4. Herstedt M, Abraham DP, Kerr JB, Edström K (2004) X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade. Electrochim Acta 49:5097–5110. doi:10.1016/j.electacta.2004.06.021

    Article  CAS  Google Scholar 

  5. Huggins RA (1988) Lithium alloy negative electrodes formed from convertible oxides. Solid State Ion 113–115:57–67. doi:10.1016/S0167-2738(98)00275-6

    Google Scholar 

  6. Obrovac MN, Christensen L, Le DB, Dahn JR (2007) Alloy design for lithium-ion battery anodes. J Electrochem Soc 154:A849–A855. doi:10.1149/1.2752985

    Article  CAS  Google Scholar 

  7. Karki K, Epstein E, Cho JH, Jia Z, Li T, Picraux ST, Wang C, Cumings J (2012) Lithium-assisted electrochemical welding in silicon nanowire battery electrodes. Nano Lett 12:1392–1397. doi:10.1021/nl204063u

    Article  CAS  Google Scholar 

  8. Chan CK, Ruffo R, Hong SS, Cui Y (2009) Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J Power Sources 189:1132–1140. doi:10.1016/j.jpowsour.2009.01.007

    Article  CAS  Google Scholar 

  9. Catarina PN, Światowska J, Chagnes A, Ozanam F, Gohier A, Pierre TV, Cojocaru CS, Cassir M, Marcus P (2013) Interphase chemistry of Si electrodes used as anodes in Li-ion batteries. Appl Surf Sci 266:5–16. doi:10.1016/j.apsusc.2012.10.165

    Article  Google Scholar 

  10. Cui LF, Yang Y, Hsu CM, Cui Y (2009) Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374. doi:10.1021/nl901670t

    Article  CAS  Google Scholar 

  11. Arie AA, Vovk OM, Lee JK (2010) Surface-coated silicon anodes with amorphous carbon film prepared by fullerene C60 sputtering. J Electrochem Soc 157:A660–A665. doi:10.1149/1.3363531

    Article  CAS  Google Scholar 

  12. Yao Y, Liu N, McDowell MT, Pasta M, Cui Y (2012) Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ Sci 5:7927–7930. doi:10.1039/C2EE21437G

    Article  CAS  Google Scholar 

  13. He Y, Yu X, Wang Y, Li H, Huang X (2011) Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv Mater 23:4938–4941. doi:10.1002/adma.201102568

    Article  CAS  Google Scholar 

  14. Yoo H, Lee JI, Kim H, Lee JP, Cho J, Park S (2011) Helical silicon/silicon oxide core–shell anodes grown onto the surface of bulk silicon. Nano Lett 11:4324–4328. doi:10.1021/nl202417c

    Article  CAS  Google Scholar 

  15. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315. doi:10.1038/nnano.2012.35

    Article  CAS  Google Scholar 

  16. Nguyen HT, Zamfir MR, Duong LD, Lee YH, Bondavalli P, Pribat D (2012) Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes. J Mater Chem 22:24618–24626. doi:10.1039/C2JM35125K

    Article  CAS  Google Scholar 

  17. Jeon BJ, Lee JK (2011) Electrochemical characteristics of porous TiO2 encapsulated silicon anode. Electrochim Acta 56:6261–6265. doi:10.1016/j.electacta.2011.05.056

    Article  CAS  Google Scholar 

  18. Park O, Lee JI, Chun MJ, Yeon JT, Yoo SM, Choi SH, Choi NS, Park SJ (2013) High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Adv 3:2538–2542. doi:10.1039/C2RA23365G

    Article  CAS  Google Scholar 

  19. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. doi:10.1038/35035045

    Article  CAS  Google Scholar 

  20. Grugeon S, Laruelle S, Urbina RH, Dupont L, Poizot P, Tarascona JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292. doi:10.1149/1.1353566

    Article  CAS  Google Scholar 

  21. Xiang JY, Tu JP, Huang XH, Yang YZ (2008) A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem 12:94–945. doi:10.1007/s10008-007-0422-1

    Article  Google Scholar 

  22. Xiang JY, Wang XL, Xia XH, Zhang L, Zhou Y, Shi SJ, Tu JP (2010) Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries. Electrochim Acta 55:492–4925. doi:10.1016/j.electacta.2010.03.091

    Google Scholar 

  23. Lee YH, Leu IC, Liao CL, Chang ST, Wu MT, Yen JH, Fung KZ (2006) Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries. Electrochem Solid State Lett 9:A207–A210. doi:10.1149/1.2171815

    Article  CAS  Google Scholar 

  24. Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wua YP, Holze R, Wu HQ (2007) Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. J Power Sources 174:1197–1200. doi:10.1016/j.jpowsour.2007.06.030

    Article  CAS  Google Scholar 

  25. Xiang JY, Tu JP, Yuan YF, Huang XH, Zhou Y, Zhang L (2009) Improved electrochemical performances of core–shell Cu2O/Cu composite prepared by a simple one-step method. Electrochem Commun 11:262–265. doi:10.1016/j.elecom.2008.11.029

    Article  CAS  Google Scholar 

  26. Kang W, Liu F, Su Y, Wang D, Shen Q (2011) The catanionic surfactant-assisted syntheses of 26-faceted and hexapod-shaped Cu2O and their electrochemical performances. CrystEngComm 13:4174–4280. doi:10.1039/C1CE05319A

    Article  CAS  Google Scholar 

  27. Zhang Z, Chen H, She X, Sun J, Teo J, Su F (2012) Synthesis of mesoporous copper oxide microspheres with different surface areas and their lithium storage properties. J Power Sources 217:336–344. doi:10.1016/j.jpowsour.2012.05.088

    Article  CAS  Google Scholar 

  28. Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wu YP (2007) Effect of Cu2O coating on graphite as anode material of lithium ion battery in PC-based electrolyte. J Power Sources 171:904–907. doi:10.1016/j.jpowsour.2007.05.099

    Article  CAS  Google Scholar 

  29. Chang WY, Choi JW, Lim JC, Lee JK (2010) Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries. J Power Sources 195:320–326. doi:10.1016/j.jpowsour.2009.06.104

    Article  CAS  Google Scholar 

  30. Boukamp BA (1995) A linear Kronig–Kramers transform test for immittance data validation. J Electrochem Soc 142:1885–1894. doi:10.1149/1.2044210

    Article  CAS  Google Scholar 

  31. Weese J (1992) A reliable and fast method for the solution of Fredhol integral equations of the first kind based on Tikhonov regularization. Comput Phys Commun 69:99–111. doi:10.1016/0010-4655(92)90132-I

    Article  Google Scholar 

  32. Sonn V, Leonide A, Ivers-Tiffée E (2008) Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. J Electrochem Soc 155:B675–B679. doi:10.1149/1.2908860

    Article  CAS  Google Scholar 

  33. Bruno G, Capezzuto P, Madan A (1995) Plasma deposition of amorphous silicon-based materials. Academic Press, San Diego

    Google Scholar 

  34. Holzschuh H, Suhr H (1990) Deposition of copper oxide (Cu2O, CuO) thin-films at high temperatures by plasma-enhanced CVD. Appl Phys A Mater Sci Process 51:486–490. doi:10.1007/BF00324731

    Article  Google Scholar 

  35. Panzner G, Egert B, Schmidt HP (1985) The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES. Surf Sci 151:400–408. doi:10.1016/0039-6028(85)90383-8

    Article  CAS  Google Scholar 

  36. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322–11330. doi:10.1103/PhysRevB.38.11322

    Article  CAS  Google Scholar 

  37. Paolella A, Brescia R, Prato M, Povia M, Marras S, Trizio LD, Falqui A, Manna L, George C (2013) Colloidal synthesis of cuprite (Cu2O) octahedral nanocrystals and their electrochemical lithiation. ACS Appl Mater Interfaces 5:2745–2751. doi:10.1021/am4004073

    Article  CAS  Google Scholar 

  38. Larson PE (1974) X-ray induced photoelectron and auger spectra of Cu, CuO, Cu2O, and Cu2S thin-films. J Electron Spectrosc Relat Phenom 4:213–218. doi:10.1016/0368-2048(74)80052-6

    Article  CAS  Google Scholar 

  39. de Crescenzi M, Diociaiuti M, Lozzi L et al (1986) Size effects on the linewidths of the Auger spectra of Cu clusters. Surf Sci 178:282–289. doi:10.1016/0039-6028(86)90304-3

    Article  Google Scholar 

  40. Scully JR, Silverman DC, Kendig MW (1993) Electrochemical impedance: analysis and interpretation. American Society for Testing and Materials, Philadelphia, p 154

    Book  Google Scholar 

  41. Hodgman CD (1962) Handbook of chemistry and physics. Cleveland, Chemical Rubber Co., p 572

    Google Scholar 

  42. Tan SI, Berry BS, Crowder BL (1972) Elastic and anelastic behavior of ion-implanted silicon. Appl Phys Lett 20:88–90. doi:10.1063/1.1654060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KIST institutional program and research grants (NRF-2012MIA2A2761792) funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-Kee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, S.H., Lim, JC. & Lee, JK. Improving the performance of silicon anode in lithium-ion batteries by Cu2O coating layer. J Appl Electrochem 44, 353–360 (2014). https://doi.org/10.1007/s10800-013-0648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0648-9

Keywords

Navigation