Skip to main content
Log in

The reduction of hydrogen peroxide at an Au-coated nanotubular TiO2 array

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An Au-coated TiO2 nanotubular array, in the vertically aligned form, was investigated as a highly porous nanostructured electrode for the electrochemical reduction of H2O2 in an acidic sulphate electrolyte at 295 K. The TiO2 nanotubular arrays were formed via a two-stage anodising then nanosized Au particles were sputter deposited onto the surface. The following aspects were studied: (a) the shape evolution of Au particles on the nanotubular array (via surface microstructural imaging), (b) the effect of different degrees of Au loading on the nanotubular array (via voltammetric analysis) and (c) the electrochemical response of an Au–TiO2 nanotubular array compared to a plain, 2-D Au foil. The Au particles could be deposited as a thin 3-D coated layer or as nodular nanostructures on the array. The highly nanoporous structure of the Au–TiO2 electrode led to a large enhancement in the limiting current (enhancement factor up to 6.6) and charge density (enhancement factor up to 8.9) for peroxide reduction compared to a plain Au foil due to the architecture of the ordered, high surface area of the nanotubular array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sour 110:1–10. doi:10.1016/S0378-7753(01)01014-X

    Article  CAS  Google Scholar 

  2. Medeiros MG, Bessette RB, Deschenes CM, Patrissi CJ, Carreiro LG, Tucker SP, Atwater DW (2003) Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J Power Sour 136:226–231. doi:10.1016/j.jpowsour.2004.03.024

    Article  Google Scholar 

  3. Prater DN, Rusek JJ (2003) Energy density of a methanol/hydrogen-peroxide fuel cell. Appl Energy 74:135–140. doi:10.1016/S0306-2619(02)00139-3

    Article  CAS  Google Scholar 

  4. Ponce de Leon C, Walsh FC, Rose A, Lakeman JB, Browning DJ, Reeve RW (2007) A direct borohydride-acid peroxide fuel cell. J Power Sour 164:441–448. doi:10.1016/j.jpowsour.2006.10.069

    Article  CAS  Google Scholar 

  5. Ponce de León C, Merino-Jiménez I, Shah AA, Walsh FC (2012) Developments in direct borohydride fuel cells and remaining challenges. J Power Sour 219:339–357. doi:10.1016/j.jpowsour.2012.06.091

    Article  Google Scholar 

  6. Cao D, Gao Y, Wang G, Miao R, Liu Y (2010) A direct NaBH4–H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes. Int J Hydrogen Energy 35:807–813. doi:10.1016/j.ijhydene.2009.11.026

    Article  CAS  Google Scholar 

  7. Ning R, Lu W, Zhang Y, Qin X, Luo Y, Hu J, Asiri AM, Al-Youbi AO, Sun X (2012) A novel strategy to synthesize Au nanoplates and their application for enzymeless H2O2 detection. Electrochim Acta 60:13–16. doi:10.1016/j.electacta.2011.10.066

    Article  CAS  Google Scholar 

  8. Sarapuu A, Tammeveski K, Tenno TT, Sammelselg V, Kontturi K, Schiffrin DJ (2001) Electrochemical reduction of oxygen on thin-film Au electrodes in acid solution. Electrochem Commun 3:446–450. doi:10.1016/S1388-2481(01)00198-9

    Article  CAS  Google Scholar 

  9. Shin Y, Lee S (2008) Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett 8:3171–3173. doi:10.1021/nl801422w

    Article  CAS  Google Scholar 

  10. Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett 10:4099–4104. doi:10.1021/nl102203s

    Article  CAS  Google Scholar 

  11. Wang D, Liu L, Zhang F, Tao K, Pippel E, Domen K (2011) Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Lett 11:3649–3655. doi:10.1021/nl2015262

    Article  CAS  Google Scholar 

  12. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218. doi:10.1021/nl052099j

    Article  CAS  Google Scholar 

  13. Ghicov A, Macak JM, Tsuchiya H, Kunze J, Haeublein V, Frey L, Schmuki P (2006) Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett 6:1080–1082. doi:10.1021/nl0600979

    Article  CAS  Google Scholar 

  14. Cao D, Sun L, Wang G, Lv Y, Zhang M (2008) Kinetics of hydrogen peroxide electroreduction on Pd nanoparticles in acidic medium. J Electroanal Chem 621:31–37. doi:10.1016/j.jelechem.2008.04.007

    Article  CAS  Google Scholar 

  15. Dilimon VS, Narayanan NSV, Sampath S (2010) Electrochemical reduction of oxygen on gold and boron-doped diamond electrodes in ambient temperature, molten acetamide–urea–ammonium nitrate eutectic melt. Electrochim Acta 55:5930–5937. doi:10.1016/j.electacta.2010.05.047

    Article  CAS  Google Scholar 

  16. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  17. Macak JM, Schmidt-Stein F, Schmuki P (2007) Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem Commun 9:1783–1787. doi:10.1016/j.elecom.2007.04.002

    Article  CAS  Google Scholar 

  18. Inasaki T, Kobayashi S (2009) Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts Original. Electrochim Acta 54:4893–4897. doi:10.1016/j.electacta.2009.02.075

    Article  CAS  Google Scholar 

  19. El-Deab MS, Ohsaka T (2002) Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim Acta 47:4255–4261. doi:10.1016/S0013-4686(02)00487-5

    Article  CAS  Google Scholar 

  20. Low CTJ, de la Toba Corral M, Walsh FC (2011) Anodising of titanium in methanesulphonic acid to form titanium dioxide nanotube arrays. Trans Inst Met Finish 89:44–50. doi:10.1179/174591911X12953503084903

    Article  CAS  Google Scholar 

  21. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266. doi:10.1016/j.jelechem.2008.01.005

    Article  CAS  Google Scholar 

  22. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cell 90:2011–2075. doi:10.1016/j.solmat.2006.04.007

    Article  CAS  Google Scholar 

  23. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18. doi:10.1016/j.cossms.2007.08.004

    Article  CAS  Google Scholar 

  24. Low CTJ, Walsh FC (2008) Linear sweep voltammetry of the electrodeposition of copper from a methanesulfonic acid bath containing a perfluorinated cationic surfactant. Surf Coating Technol 202:3050–3057. doi:10.1016/j.surfcoat.2007.11.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided by the Research Institute for Industry (RIfI) at Southampton University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ponce de Leon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, C.T.J., Ponce de Leon, C. & Walsh, F.C. The reduction of hydrogen peroxide at an Au-coated nanotubular TiO2 array. J Appl Electrochem 44, 169–177 (2014). https://doi.org/10.1007/s10800-013-0623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0623-5

Keywords

Navigation