Skip to main content
Log in

Feynman’s Corner Rule; Quantum Propagation from Special Relativity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Feynman’s sum-over-paths prescription for the Dirac equation in a two dimensional spacetime can be formulated to give an unconventional view of the relationship between quantization and special relativity. By considering a local rule for the maintenance of Lorentz covariance in a discrete space, one is able to see the origin of Feynman’s rule and, taking a continuum limit at the last step, one obtains the Dirac propagator as a manifestation of special relativity, rather than a formal addition to it. In this route to the Dirac equation, the path-dependent phase of wavefunctions, relativistic or not, is a direct manifestations of path-dependent proper time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKeon, D.G.C., Ord, G.N.: Time reversal and a stochastic model of the Dirac equation in an electromagnetic field. Can J. Phys. 82(1) (2004)

  2. Wheeler, J.A.: Gravitation. W.H. Freeman, New York (1973)

    Google Scholar 

  3. Rindler, W.: Introduction to Special Relativity. Oxford University Press, Oxford (1999)

    Google Scholar 

  4. Taylor, E.F., Wheeler, J.A.: Spacetime Physics. W.H. Freeman, New York (1992)

    Google Scholar 

  5. Taylor, E.F., Wheeler, J.A.: Exploring Black Holes: Introduction to General Relativity. Addison-Wesley Longman, Reading, Harlow (2000)

    Google Scholar 

  6. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  7. Gersch, H.A.: Feynman’s relativistic chessboard as an Ising model. Int. J. Theor. Phys. 20, 491 (1981)

    Article  Google Scholar 

  8. Jacobson, T., Schulman, L.S.: Quantum stochastics: the passage from a relativistic to a non-relativistic path integral. J. Phys. A 17, 375–383 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  9. Kauffman, L.H., Noyes, H.P.: Discrete physics and the Dirac equation. Phys. Lett. A 218, 139 (1996)

    Article  ADS  Google Scholar 

  10. Gaveau, B., Jacobson, T., Kac, M., Schulman, L.S.: Relativistic extension of the analogy between quantum mechanics and Brownian motion. Phys. Rev. Lett. 53(5), 419–422 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ord, G.N., Gualtieri, J.A.: The Feynman propagator from a single path. Phys. Rev. Lett 89(25), 250403 (2002)

    Article  ADS  Google Scholar 

  12. Ord, G.N., Mann, R.B.: Entwined paths, difference equations, and the Dirac equation. Phys. Rev. A 67(2), 022105 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ord, G.N.: Quantum mechanics in a two-dimensional spacetime: What is a wavefunction? Ann. Phys. 324(6), 1211–1218 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Kauffman, L.H.: Non-commutative worlds. New J. Phys. 6, 173 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  15. Feynman, R.P.: Nobel lecture

  16. Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky M. J. Math. 4(3), 497–509 (1974)

    Article  MATH  Google Scholar 

  17. Kac, M.: Random Walks and the Theory of Brownian Motion. MIT Press, Cambridge (1979)

    Google Scholar 

  18. Schweber, S.S.: Feynman and the visualization of space-time processes. Rev. Mod. Phys. 58, 449 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hestenes, D.: Mysteries and insights of Dirac theory. Ann. Fond. Louis de Broglie 28, 390–408 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Ord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ord, G.N. Feynman’s Corner Rule; Quantum Propagation from Special Relativity. Int J Theor Phys 49, 2528–2539 (2010). https://doi.org/10.1007/s10773-010-0445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-010-0445-8

Keywords

Navigation