Skip to main content
Log in

Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Conventional tomato (Solanum lycopersicum L.) descriptors are of great utility for gross morphological characterization but may not be practical for the precise fruit description required for distinguishing closely related cultivar groups. Tomato Analyzer is a new phenomics tool that provides multiple fruit morphology data from scanned images of fruit sections. We characterized 69 accessions of local tomato varieties from the region of València (Spain) corresponding to eight cultivar groups (Borseta, Cherry, Cor, Penjar, Plana, Pruna, Redona, and Valenciana) with 64 conventional and 38 Tomato Analyzer descriptors. Significant differences were found among accessions for all traits except for five monomorphic conventional descriptors, revealing a large diversity in the collection. Significant differences were also found among cultivar groups for 36 conventional and 37 Tomato Analyzer descriptors. The groups Borseta, Cherry, Penjar, Plana, and Pruna were clearly distinct and each of them presented many significant differences with the rest of groups. Conventional descriptors did not differentiate well the Cor, Redona, and Valenciana cultivar groups, but Tomato Analyzer descriptors clearly distinguish Valenciana from Cor and Redona groups. A multivariate principal components analysis (PCA) showed that with the exception of six (8.7 %) accessions, the different cultivar groups (including the very similar Cor and Redona) plotted in separate areas of the PCA graph. The results have shown that combined conventional and Tomato Analyzer descriptors in conjunction with PCA analysis are a powerful tool for characterization and classification of local tomato varieties, as well as for distinguishing between related cultivar groups. This has important implications for the enhancement and protection of local tomato varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreakis N, Giordano I, Pentangelo A, Fogliano V, Graziani G, Monti LM, Rao R (2004) DNA fingerprinting and quality traits of Corbarino cherry-like tomato landraces. J Agric Food Chem 52:3366–3371

    Article  CAS  PubMed  Google Scholar 

  • Blanca J, Cañizares J, Cordero L, Pascual L, Díez MJ, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of tomato. PLoS One 7:e48198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bletsos FA, Goulas C (2002) Fresh consumption tomato performance of a local landraces and derived lines. Acta Hortic 579:95–100

    Google Scholar 

  • Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyse fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Brugarolas M, Martínez-Carrasco L, Martínez-Poveda A, Ruiz JJ (2009) A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish J Agric Res 7:294–304

    Article  Google Scholar 

  • Casals J, Bosch L, Casañas F, Cebolla J, Nuez F (2011) Montgrí, a cultivar within the Montserrat type. HortScience 45:1885–1886

    Google Scholar 

  • Casals J, Pascual L, Cañizares J, Cebolla-Cornejo J, Casañas F, Nuez F (2012) Genetic basis of long shelf life and variability in Penjar tomato. Genet Resour Crop Evol 59:219–229

    Article  Google Scholar 

  • Causse M, Friguet C, Coiret C, Lépicier M, Navez B, Lee M, Holthuysen N, Sinesio F, Moneta E, Grandillo S (2010) Consumer preferences for fresh tomato at the European scale: a common segmentation on taste and firmness. J Food Sci 75:S531–S541

    Article  CAS  PubMed  Google Scholar 

  • Cebolla-Cornejo J, Soler S, Nuez F (2007) Genetic erosion of traditional varieties of vegetable crops in Europe: tomato cultivation in Valencia (Spain) as a case study. Intl J Plant Prod 1:113–127

    Google Scholar 

  • Cebolla-Cornejo J, Roselló S, Nuez F (2013) Phenotypic and genetic diversity of Spanish tomato landraces. Sci Hortic 162:150–164

    Article  Google Scholar 

  • Darrigues A, Hall J, van der Knaap E, Francis DM, Dujmovic N, Gray S (2008) Tomato Analyzer-color test: a new tool for efficient digital phenotyping. J Amer Soc Hortic Sci 133:579–586

    Google Scholar 

  • Díez MJ, Nuez F (2008) Tomato. In: Prohens J, Nuez F (eds) Handbook of plant breeding: vegetables II. Springer, New York, pp 249–323

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • García-Martínez S, Corrado G, Ruiz JJ, Rao R (2013) Diversity and structure of a simple of traditional Italian and Spanish tomato accessions. Genet Resour Crop Evol 60:789–798

    Article  Google Scholar 

  • Gómez R, Costa J, Amo M, Alvarruiz A, Picazo M, Pardo JE (2001) Physicochemical and colorimetric evaluation of local varieties of tomato grown in SE Spain. J Sci Food Agric 81:1101–1105

    Article  Google Scholar 

  • Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656

    Article  PubMed  Google Scholar 

  • Gonzalo MJ, Brewer MT, Anderson C, Sullivan D, Gray S, van der Knaap E (2009) Tomato fruit shape analysis using morphometric and morphology attributes implemented in Tomato Analyzer software program. J Am Soc Hortic Sci 134:77–87

    Google Scholar 

  • Hammer K (2003) Resolving the challenge posed by agro diversity and plant genetic resources—an attempt. J Agric Rural Dev Trop Subtrop 76:1–184

    Google Scholar 

  • Hammer K, Diederichsen A (2009) Evolution, status and perspectives for landraces in Europe. In: Vetelainen M, Negri V, Maxted N (eds) European landraces: on-farm conservation, management and use. Bioversity International, Rome, pp 23–43

    Google Scholar 

  • Hammer K, Knüpffer H, Laghetti G, Perrino P (1999) Seeds from the past: A catalogue of crop germplasm in north-central Italy. Germplasm Institute of C.N.R, Bari

    Google Scholar 

  • Hammer K, Arrowsmith N, Gladis T (2003) Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90:241–250

    Article  CAS  PubMed  Google Scholar 

  • Hurtado M, Vilanova S, Plazas M, Gramazio P, Andújar I, Herraiz FJ, Castro A, Prohens J (2014) Enhancing conservation and use of local vegetable landraces: the Almagro eggplant (Solanum melongena L.) case study. Genet Resour Crop Evol (in press)

  • IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Izzah NK, Lee J, Perumal S, Park JY, Ahn K, Fu D, Kim GB, Nam YW, Yang TJ (2013) Microsatellite-based analysis of genetic diversity in 91 commercial Brassica oleracea L. cultivars belonging to six varietal groups. Genet Resour Crop Evol 60:1967–1986

    Article  CAS  Google Scholar 

  • Lammerts van Bueren ET, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer MM (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS Wageningen J Life Sci 58:193–205

    Article  Google Scholar 

  • Little T, Hills J (1978) Agricultural experimentation: Design and analysis. Wiley, New York

    Google Scholar 

  • Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:657–669

    Article  PubMed  Google Scholar 

  • Mazzucato A, Ficcadenti N, Caioni M, Mosconi P, Piccinini E, Sanampudi VRR, Sestili S, Ferrari V (2010) Genetic diversity and distinctiveness in tomato (Solanum lycopersicum L.) landraces: the Italian case study of ‘a pera Abruzzese’. Sci Hortic 125:55–62

    Article  CAS  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43:1235–1248

    Article  Google Scholar 

  • Panthee DP, Labate JA, McGrath MT, Breksa AP III, Robertson LD (2013) Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica 193:169–182

    Article  CAS  Google Scholar 

  • Pitrat M, Hanelt P, Hammer K (2000) Some comments on infraspecific classification of cultivars of melon. Acta Hortic 510:29–36

    Google Scholar 

  • Rao R, Corrado G, Bianchi M, Di Mauro A (2006) (GATA)4 DNA fingerprinting identifies morphologically characterized ‘San Marzano’ tomato plants. Plant Breed 125:173–176

    Article  CAS  Google Scholar 

  • Rodríguez G, Strecker J, Brewer M, Gonzalo MJ, Anderson C, Lang L, Sullivan D, Wagner E, Strecker B, Drushal R, Dujmovic N, Fujimuro K, Jack A, Njanji I, Thomas J, Gray S, van der Knaap E (2010a) Tomato Analyzer version 3 user manual. http://www.oardc.osu.edu/vanderknaap/files/Tomato_Analyzer_3.0_Manual.pdf

  • Rodríguez GR, Moyseenko JB, Robbins MD, Morejón NH, Francis DM, van der Knaap E (2010b) Tomato Analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. J Vis Exp 37:1856

    PubMed  Google Scholar 

  • Rodríguez GR, Muñoz S, Anderson C, Sim SC, Michel A, Causse M, Mc Spadden Gardener BB, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez GR, Kim HJ, van der Knaap E (2013) Mapping of two suppressors of OVATE (sov) loci in tomato. Heredity 111:256–264

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Burruezo A, Prohens J, Roselló S, Nuez F (2005) “Heirloom” varieties as sources of variation for the improvement of fruit quality in greenhouse-grown tomatoes. J Hortic Sci Biotechnol 80:453–460

    Google Scholar 

  • Ruiz JJ, García-Martínez S, Picó B, Gao M, Quiros CF (2005) Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers. J Am Soc Hortic Sci 130:88–94

    CAS  Google Scholar 

  • Scott JW (2010) Phenotyping of tomato for SolCAP and onward into the void. HortScience 45:1314–1316

    Google Scholar 

  • Spataro G, Negri V (2013) The European seed legislation on conservation varieties: focus, implementation, present and future impact on landrace on farm conservation. Genet Resour Crop Evol 60:2421–2430

    Article  Google Scholar 

  • Spooner DM, Hetterscheid WLA, van den Berg RG, Brandenburg WA (2003) Plant nomenclature and taxonomy: an horticultural and agronomic perspective. Hortic Rev 28:1–60

    Google Scholar 

  • Strecker J, Rodríguez G, Njanji I, Thomas J, Jack A, Darrigues A, Hall J, Dujmovic N, Gray S, van der Knaap E, Francis D (2010) Tomato Analyzer color test manual version 3. http://oardc.osu.edu/vanderknaap/files/Color_Test_3.0_Manual.pdf

  • Terzopoulos PJ, Bebeli PJ (2008) DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic 116:354–361

    Article  CAS  Google Scholar 

  • Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic 126:138–144

    Article  Google Scholar 

  • Trichopoulou A, Soukara S, Vasilopoulou E (2007) Traditional foods: a science and society perspective. Trends Food Sci Technol 18:420–427

    Article  CAS  Google Scholar 

  • UPOV (2002) General introduction to the examination of distinctness, uniformity and stability and the development of harmonized descriptors of new varieties of plants (TG/1/3). International Union for the Protection of New Varieties of Plants, Geneva

    Google Scholar 

  • UPOV (2013) Guidelines for the conduct of tests for distinctness, uniformity and stability: Tomato (TG/44/11 Rev.). International Union for the Protection of New Varieties of Plants, Geneva

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Mrs. Carmen Moreno Piquer for providing the experimental field and cultivation expenses and to Mr. José Soler Sanz for knowledge on diversity and advice on the cultivation of local tomato varieties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Prohens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figàs, M.R., Prohens, J., Raigón, M.D. et al. Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer. Genet Resour Crop Evol 62, 189–204 (2015). https://doi.org/10.1007/s10722-014-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0142-1

Keywords

Navigation