Skip to main content
Log in

Diversity and structure of a sample of traditional Italian and Spanish tomato accessions

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Italy and Spain are the countries with the oldest record of tomato cultivation in Europe and arguably, with the higher number of traditional and heirloom varieties. In this work we evaluated the genetic diversity and structure in a sample of 26 cultivated accessions belonging to four traditional tomato types, Muchamiel and De la Pera from Spain, and San Marzano and Sorrento from Italy. The (GATA)4 fingerprinting of the 109 genotypes confirmed the ability of this DNA marker to discriminate tomato plants that are otherwise difficult to distinguish. Furthermore, both the estimated population structure and the genetic differentiation statistics were consistent in indicating that subpopulations are more likely to correspond to farmers’ breeding efforts and market specialization than to country-specific groups. Our results provide useful information not only for germplasm description and management but also for current breeding programs in both regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, García-Martínez S, Vázquez-Araujo L, Ruiz JJ, Carbonell-Barrachina AA (2010) Comparative post-harvest behaviour of traditional and virus-resistant Muchamiel tomatoes. J Sci Food Agric 90:1056–1062

    PubMed  CAS  Google Scholar 

  • Andreakis N, Giordano I, Pentangelo A, Fogliano V, Graziani G, Monti LM, Rao R (2004) DNA fingerprinting and quality traits of corbarino cherry-like tomato landraces. J Agric Food Chem 52:3366–3371

    Article  PubMed  CAS  Google Scholar 

  • Asfaw A, Blair MW, Almekinders CJM (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12

    Article  PubMed  Google Scholar 

  • Brugarolas M, Martínez-Carrasco L, Martínez-Poveda A, Ruiz JJ (2009) A competitive strategy for fruit and vegetable products: traditional varieties of tomato in the local market. Span J Agric Res 7:294–304

    Google Scholar 

  • Caramante M, Rao R, Monti LM, Corrado G (2009) Discrimination of San Marzano accessions: a comparison of minisatellite, CAPS and SSR markers in relation to morphological traits. Sci Hortic 120:560–564

    Article  CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger S, Matnyazov R, Clark D, Talbert L, Anderson J, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner P, Rudd J, Haley S, Carver B, Perry S, Sorrells M, Akhunov E (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  Google Scholar 

  • Corrado G, Imperato A, La Mura M, Perri E, Rao R (2011) Genetic diversity among olive varieties of Southern Italy and the traceability of olive oil using SSR markers. J Horticult Sci Biotechnol 86:461–466

    Google Scholar 

  • Ercolano MR, Carli P, Soria A, Fogliano V, Frusciante L, Barone A (2008) Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica 164:571–582

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • García-Gusano M, García-Martínez S, Ruiz JJ (2004) Caracterización de variedades de tomate mediante marcadores SNP. Actas de Horticultura 41:123–126

    Google Scholar 

  • García-Martínez S, Andreani L, García-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of AFLPs and SSRs for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49(6):648–656

    Article  PubMed  Google Scholar 

  • García-Martínez S, Gálvez-Sola LN, Alonso A, Agulló E, Rubio F, Ruiz JJ, Moral R (2011a) Quality assessment of tomato landraces and virus-resistant breeding lines: quick estimation by near-infrared reflectance (NIRS). J Sci Food Agric. doi:10.1002/jsfa.4661

    Google Scholar 

  • García-Martínez S, Grau A, Alonso A, Rubio F, Valero M, Ruiz JJ (2011b) UMH 1200, a breeding line within the Muchamiel tomato type resistant to three viruses. HortScience 46(7):1054–1055

    Google Scholar 

  • García-Martínez S, Grau A, Alonso A, Rubio F, Valero M, Ruiz JJ (2012) UMH 1203, a multiple-virus resistant fresh-market tomato breeding line for open field conditions. HortScience 47(1):124–125

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kaemmer D, Weising K, Bayermann B, Börner T, Epplen JT, Kahl G (1995) Oligonucleotide fingerprinting of tomato DNA. Plant Breed 114:12–17

    Article  CAS  Google Scholar 

  • Lu Y, Yan J, Guimarães C, Taba S, Hao S, Gao S, Chen S, Li J, Zhang S, Vivek B, Magorokosho Z, Mugo S, Makumbi D, Parentoni S, Shah T, Rong T, Crouch J, Xu J (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Carrasco L, Brugarolas M, Martínez-Poveda A, García-Martínez S, Ruiz JJ Modelling perceived quality of tomato by structural equation analysis. Br Food J (in press)

  • Mazzucatto A, Papa R, Bitochi E, Mosconi P, Nanni L, Negri V, Enea-Picarella M, Siligato F, Soressi GP, Tiranti B, Veronesi F (2009) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:657–669

    Article  Google Scholar 

  • Melchiade D, Foroni I, Corrado G, Santangelo I, Rao R (2007) Authentication of the ‘Annurca’ apple in agro-food chain by amplification of microsatellite loci. Food Biotech 21:33–43

    Article  CAS  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Monti LM, Santangelo E, Corrado G, Rao R, Soressi GP, Scarascia-Magnozza GT (2004) Il San Marzano: problematiche e prospettive in relazione alla sua salvaguardia e alla necessita di interventi genetici. Agroindustria 3:97–104

    Google Scholar 

  • Muñoz-Falcón JE, Prohens J, Vilanova S, Nuez F (2008) Characterization, diversity, and relationships of the Spanish striped (Listada) eggplants: a model for the enhancement and protection of local heirlooms. Euphytica 164:405–419

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Horowitz M, Zamir D, Wolf S (1995) Random amplified polymorphic DNA markers are useful for purity determination of tomato hybrids. HortScience 30(2):377

    CAS  Google Scholar 

  • Park YH, West MAL, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rao R, Corrado G, Bianchi M, Di Mauro A (2006) (GATA)4 DNA fingerprinting identifies morphologically characterized San Marzano tomato plants. Plant Breed 125:173–176

    Article  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.0, user guide. Exeter Software, New York

  • Ruiz JJ, García-Martínez S (2009) Tomato varieties ‘Muchamiel’ and ‘De la pera’ from the southeast of Spain: Genetic improvement to promote on-farm conservation. In: Vetelainen M, Negri V, Maxted N (eds) European landrace: on-farm conservation, management and use. Bioversity Technical Bulletin no 15:171–176

  • Ruiz JJ, Alonso A, García-Martínez S, Valero M, Blasco P, Ruiz-Bevia F (2005a) Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. J Sci Food Agric 85:54–60

    Article  CAS  Google Scholar 

  • Ruiz JJ, García-Martínez S, Picó B, Gao M, Quiros CF (2005b) Genetic variability and relationship of closely related Spanish traditional varieties of tomato as detected by SRAP and SSR markers. J Am Soc Hortic Sci 130(1):88–94

    CAS  Google Scholar 

  • Ruiz JJ, Martínez N, Valero M, García-Martínez S, Moral R, Serrano M (2005c) Micronutrient composition and quality characteristics of traditional tomato cultivars in the South-East of Spain. Commun Soil Sci Plant Anal 36:649–660

    Article  CAS  Google Scholar 

  • Ruiz JJ, Valero M, García-Martínez S, Serrano M, Moral R (2006) Effect of recent genetic improvement on some analytical parameters of tomato fruit quality. Commun Soil Sci Plant Anal 37:2647–2658

    Article  CAS  Google Scholar 

  • Sambrook J, Fritschi EF, Maniatis T (1989) Molecular clonning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM (2009) Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L. reveals patterns of SNP variation associated with breeding. BMC Genomics 10:10

    Article  Google Scholar 

  • Sim SC, Robbins MD, Van Deynze A, Michel AP, Francis DM (2011) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106:927–935

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

    Google Scholar 

  • Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic 126(2):138–144

    Google Scholar 

  • Vekemans X (2002) AFLP-SURV, version 1.0. Distributed by the author. Laboratoire de Genetique et Ecologie Vegetale, Universite′ Libre de Bruxelles, Belgium

  • Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40:25–33

    Article  PubMed  CAS  Google Scholar 

  • Yang WC, Bai XD, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34

    Article  CAS  Google Scholar 

  • Yi SS, Jatoi SA, Fujimura T, Yamanaka S, Watanabe J, Watanabe KN (2008) Potential loss of unique genetic diversity in tomato landraces by genetic colonization of modern cultivars at a non-center of origin. Plant Breed 127:189–196

    Article  CAS  Google Scholar 

  • Zeven AC (2002) Traditional maintenance breeding of landraces: 2. Practical and theoretical considerations on maintenance of variation of landraces by farmers and gardeners. Euphytica 123:147–158

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish MICINN through projects AGL2008-03822, AGL2011-26957, and IT2009-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Martínez, S., Corrado, G., Ruiz, J.J. et al. Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genet Resour Crop Evol 60, 789–798 (2013). https://doi.org/10.1007/s10722-012-9876-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9876-9

Keywords

Navigation