Skip to main content
Log in

Quantum modified Regge–Teitelboim cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

An Erratum to this article was published on 19 July 2014

Abstract

The canonical quantization of the modified geodetic brane cosmology which is implemented from the Regge–Teitelboim model and the trace of the extrinsic curvature of the brane trajectory, \(K\), is developed. As a second-order derivative model, on the grounds of the Ostrogradski Hamiltonian method and the Dirac’s scheme for constrained systems, we find suitable first- and second-class constraints which allow for a proper quantization. We also find that the first-class constraints obey a sort of truncated Virasoro algebra. The effective quantum potential emerging in our approach is exhaustively studied where it shows that an embryonic epoch is still present. The quantum nucleation is sketched where we observe that it is driven by an effective cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This fact is supported by using an existing completeness relation in the geometry of deformations for branes, namely \(\eta ^{\mu \nu } = n^\mu n^\nu - \eta ^\mu \eta ^\nu + h^{AB} \epsilon ^\mu {}_A \epsilon ^\nu {}_B\). See Ref. [31].

  2. This function is given by the relation

    $$\begin{aligned} G (a,N,v,\varPi _v) := \left[ \frac{2}{a^3} \left( v - a^2 \cosh \varPi _v - \bar{\beta } a^3 \right) - \bar{\varLambda } \left( \sqrt{\gamma } + \frac{a}{2\sqrt{\gamma }} \frac{\partial \gamma }{\partial a} \right) \right] N \sinh \varPi _v. \end{aligned}$$

References

  1. Cordero, R., Cruz, M., Molgado, A., Rojas, E.: Modified geodetic brane cosmology. Class. Quantium Gravity 29, 175010 (2011)

    Article  ADS  Google Scholar 

  2. Regge, T., Teitelboim, C.: General relativity a la string: a progress report. In: Ruffini, R. (ed.) Proceedings of the First Marcel Grossman Meeting, Trieste, Italy, p. 77. North-Holland, Amsterdam (1975)

    Google Scholar 

  3. Pavšič, M.: Classical theory of a space-time sheet. Phys. Lett. A 107, 66 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Davidson, A., Karasik, D.: Quantum gravity of a brane-like universe. Mod. Phys. Lett. A 13, 2187 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. Karasik, D., Davidson, A.: Geodetic brane gravity. Phys. Rev. D 67, 064012 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. Paston, S.A., Sheykin, A.A.: The approach to gravity as a theory of embedded surface. arXiv: 1402.1121 [gr-qc]

  7. Dvali, G.R., Gabadadze, G., Porrati, M.: Metastable gravitons and infinite volume extra dimensions. Phys. Lett. B 484, 112 (2000)

  8. Dvali, G.R., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Chen, B.-Y.: On a variational problem on hypersurfaces. J. Lond. Math. Soc. 6, 321 (1973)

    Article  MATH  Google Scholar 

  10. Svetina, S., Žekš, B.: Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J 17, 101 (1989)

    Article  Google Scholar 

  11. Önder, M., Tucker, R.M.: Semiclassical investigation of a charged relativistic membrane model. J. Phys. A. Math. Gen. 21, 3423 (1988)

    Article  ADS  Google Scholar 

  12. Önder, M., Tucker, R.W.: Membrane interactions and total mean curvature. Phys. Lett. B 202, 501 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  13. Cordero, R., Molgado, A., Rojas, E.: Quantum charged rigid membrane. Class. Quantium Gravity 28, 065010 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  14. Davidson, A., Rubin, S.: Extensible gravitational Dirac models of the electron. Class. Quantium Gravity 28, 125005 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Goon, G.L., Hinterbichler, K., Trodden, M.: New class of effective field theories from embedded branes. Phys. Rev. Lett. 106, 231102 (2011)

    Article  ADS  Google Scholar 

  16. Goon, G.L., Hinterbichler, K., Trodden, M.: Symmetries for Galileons and DBI scalars on curved space. J. Cosmol. Astrop. Phys. 07, 017 (2011)

    Article  ADS  Google Scholar 

  17. Davidson, A., Karasik, A., Lederer, Y.: Wavefunction of a brane-like universe. Class. Quantium Gravity 16, 1349 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Friedman, A.: Isometric embedding of Riemannian manifolds into Euclidean spaces. Rev. Mod. Phys. 37, 201 (1965)

    Article  MATH  ADS  Google Scholar 

  19. Rosen, J.: Embedding of various relativistic Riemannian spaces in pseudo-Euclidean spaces. Rev. Mod. Phys. 37, 204 (1965)

    Article  MATH  ADS  Google Scholar 

  20. Cruz, M., Rojas, E.: Born-Infeld extension of Lovelock brane gravity. Class. Quantium Gravity 30, 115012 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  21. Capovilla, R., Guven, J., Rojas, E.: Hamiltonian dynamics of extended objects. Class. Quantium Gravity 21, 5563 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Nicolis, A., Rattazzi, R., Trincherini, E.: The Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. de Rham, C., Tolley, A.J.: DBI and the Galileon reunited. J. Cosmol. Astropart. Phys. 05, 015 (2011)

    Google Scholar 

  24. Goon, G., Hinterbichler, K., Trodden, M.: Galileons on cosmological backgrounds. J. Cosmol. Astropart. Phys. 12, 004 (2011)

    Article  ADS  Google Scholar 

  25. Burrage, C., de Rham, C., Heisenberg, L.: de Sitter Galileon. J. Cosmol. Astropart. Phys. 05, 025 (2011)

    Article  ADS  Google Scholar 

  26. Deffayet, C., Deser, S., Esposito-Farese, G.: Generalized Galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors. Phys. Rev. D 80, 064015 (2009)

    Article  ADS  Google Scholar 

  27. Deffayet, C., Esposito-Farese, G., Vikman, A.: Covariant Galileon. Phys. Rev. D 79, 084003 (2009)

    Article  ADS  Google Scholar 

  28. Deffayet, C., Deser, S., Esposito-Farese, G.: Arbitrary \(p\)-form Galileons. Phys. Rev. D 82, 061501(R) (2010)

    Article  ADS  Google Scholar 

  29. Fairlie, D.B., Govaerts, J., Morozov, A.: Universal field equations with covariant solutions. Nucl. Phys. B 373, 214 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  30. Trodden, M., Hinterbichler, K.: Generalizing Galileons. Class. Quantum Gravity 28, 204003 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  31. Cordero, R., Molgado, A., Rojas, E.: Ostrogradski approach for the Regge–Teitelboim type cosmology. Phys. Rev. D 79, 024024 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. Paul, B.: Gauge symmetry and Virasoro algebra in quantum charged rigid membrane: a first order formalism. Phys. Rev. D 87, 045003 (2013)

    Article  ADS  Google Scholar 

  33. Banerjee, R., Mukherjee, P., Paul, B.: New Hamiltonian analysis of Regge–Teitelboim minisuperspace cosmology. Phys. Rev. D 89, 043508 (2014)

    Article  ADS  Google Scholar 

  34. Paston, S.A., Semenova, A.N.: Constraint algebra for Regge–Teitelboim formulation of gravity. Int. J. Theor. Phys. 49, 2648 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Davidson, A.: \(\Lambda =0\) cosmology of a brane-like universe. Class. Quantum Gravity 16, 653 (1999)

    Article  MATH  ADS  Google Scholar 

  36. Dirac, P.A.M.: Lectures on Quantum Mechanics. Dover publications, Mineola, New York (2001)

    Google Scholar 

  37. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton, New Jersey (1992)

    MATH  Google Scholar 

  38. Nesterenko, V.V.: Singular Lagrangians with higher derivatives. J. Phys. A Math. Gen. 22, 1673 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Ostrogradski, M.: Mem. Ac. St. Petersbg. VI 4, 385 (1850)

    Google Scholar 

  40. Chen, T., Fasiello, M., Lim, E.A., Tolley, A.: Higher derivative theories with constraints: exorcising Ostrogradski’s ghost. J. Cosmol. Astropart. Phys. 02, 042 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  41. Ho, P.M.: Virasoro algebra for particles with higher derivative interactions. Phys. Lett. B 558, 238 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Deffayet, C., Dvali, G.R., Gabadadze, G.: Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 65, 044023 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  43. Davidson, A., Gurwich, I.: Dirac relaxation of the Israel junction conditions: unified Randall–Sundrum brane theory. Phys. Rev. D 74, 044023 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  44. Vilenkin, A.: Wave function discord. Phys. Rev. D 58, 067301 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  45. Cordero, R., Vilenkin, A.: Stealth branes. Phys. Rev. D 65, 083519 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  46. Garriga, J.: Nucleation rates in flat and curved space. Phys. Rev. D 49, 6327 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  47. Vilenkin, A.: Quantum creation of universes. Phys. Rev. D 30, 509 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  48. Vilenkin, A.: Approaches to quantum cosmology. Phys. Rev. D 50, 2581 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  49. Myers, R.C.: Higher-derivative gravity, surface terms and string theory. Phys. Rev. D 36, 392 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  50. Davis, S.C.: Generalized Israel junction conditions for a Gauss–Bonnet brane world. Phys. Rev. D 67, 024030 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Alexander Vilenkin for helpful discussions. AM acknowledges support from PROMEP UASLP-PTC-402. ER acknowledges partial support from Grant PROMEP, CA-UV: Algebra, Geometría y Gravitación. M.C. was supported by PUCV through Proyecto DI Postdoctorado 2014. Also, E.R. and M.C. acknowledge partial support from the Grant CONACyT CB-2012-01-177519. This work was partially supported by SNI (México). RC also acknowledges support from EDI, COFAA-IPN, SIP-20131541 and SIP-20144150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efraín Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero, R., Cruz, M., Molgado, A. et al. Quantum modified Regge–Teitelboim cosmology. Gen Relativ Gravit 46, 1761 (2014). https://doi.org/10.1007/s10714-014-1761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1761-8

Keywords

Navigation