Skip to main content
Log in

Gravitational collapse with tachyon field and barotropic fluid

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A particular class of space-time, with a tachyon field, \(\phi \), and a barotropic fluid constituting the matter content, is considered herein as a model for gravitational collapse. For simplicity, the tachyon potential is assumed to be of inverse square form i.e., \(V(\phi )\sim \phi ^{-2}\). Our purpose, by making use of the specific kinematical features of the tachyon, which are rather different from a standard scalar field, is to establish the several types of asymptotic behavior that our matter content induces. Employing a dynamical system analysis, complemented by a thorough numerical study, we find classical solutions corresponding to a naked singularity or a black hole formation. In particular, there is a subset where the fluid and tachyon participate in an interesting tracking behaviour, depending sensitively on the initial conditions for the energy densities of the tachyon field and barotropic fluid. Two other classes of solutions are present, corresponding respectively, to either a tachyon or a barotropic fluid regime. Which of these emerges as dominant, will depend on the choice of the barotropic parameter, \(\gamma \). Furthermore, these collapsing scenarios both have as final state the formation of a black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Notice that, since the interior space-time (4) is spatially homogeneous, it is obvious that, the energy-momentum tensor must also be spatially homogeneous.

  2. Using the energy density (11) and pressure (15), the weak energy condition can be written as follows

    $$\begin{aligned} \rho +p=\frac{nc}{3a^{n}}>0. \end{aligned}$$
    (12)

    The weak energy condition is satisfied throughout the collapse process (see also next section for more details regarding the issue of the energy conditions).

  3. We note that satisfying the weak energy condition implies that the null energy condition (NEC) is held as well.

  4. We recall that throughout this paper \(H<0\), i.e., \(\dot{a}<0\) is assumed.

  5. Or equivalently, the surface where the trajectories will be present can be written as \(y^{2}=\left(1-s\right)^{2}\left(1-x^{2}\right)\).

  6. In the absence of a barotropic fluid, the effective phase space is one-dimensional.

  7. The time at which the collapse reaches the singularity is finite. Thus the tachyon field at the singularity remains finite as \(\phi (t_{s})=t_{s}+\phi _{0}\).

  8. For the \(\phi <0\) branch, \(\phi _{0}\) is negative at the initial condition. Thus, the absolute value of the tachyon field starts to decrease from the initial configuration as \(\phi (t)=t-|\phi _{0}|\) until the singular point at time \(t_{s}<|\phi _{0}|\), where tachyon field reaches its minimum but non-zero value \(\phi _{s}\). This leads it uphill the potential until the singular epoch, where the potential becomes maximum but finite.

  9. On the other hand, for the \(\phi <0\) branch, the tachyon field increases from its initial condition as time evolves, proceeding to ever less negative values as \(\phi \rightarrow 0^{-}\). In this case, it proceeds downhill the tachyon potential till the system reaches \(a=0\) at \(t=t_{s}\), where the Hubble rate and hence the total energy density of the system diverge. This implies that the time at which the collapse system reaches the singularity is always \(t_{s}\le \phi _{0}\).

  10. For the \(\phi <0\) branch, the time dependence of the tachyon field is given by \(\phi (t)=\sqrt{\gamma }t+\phi _{0}\). Therefore the tachyon field starts its evolution from the initial configuration at \(\phi _{0}<0\), decreasing in time, going uphill the potential.

  11. The case of a standard scalar field was investigated in [42, 67].

  12. It is worthwhile to compare the result obtained herein for a homogeneous (tachyonic) collapsing matter field with the gravitational collapse of a k-essence scalar field with non-standard kinematic terms in [58], where the scalar field has a dependence to the radius \(r\) i.e., \(\phi =\phi (r)\). In both models, the collapsing systems lead to the black hole formation.

  13. Satisfying the SEC for the tachyon field demands that \(\rho _{\phi }+3p_{\phi }\ge 0\). Thus, the SEC holds if \(\dot{\phi }^{2}>2/3\).

References

  1. Joshi, P.: Gravitational Collapse and Space-Time Singularities. Cambridge University Press, Cambridge (2007)

  2. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1974)

    Google Scholar 

  3. Penrose, R.: Riv. Nuovo Cimento 1, 252 (1969)

    Google Scholar 

  4. Harada, T.: Phys. Rev. D 58, 104015 (1998)

    Article  ADS  Google Scholar 

  5. Harada, T., Maeda, H.: Phys. Rev. D 63, 084022 (2001)

    Article  ADS  Google Scholar 

  6. Goswami, R., Joshi, P.S.: Class. Quantum Gravity 19, 5229 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Giamb, R., Giannoni, F., Magli, G., Piccione, P.: Gen. Relativ. Gravit. 36, 1279 (2004)

    Article  ADS  Google Scholar 

  8. Villas da Rocha, J.F., Wang, A.: Class. Quantum Gravity 17, 2589 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Giamb, R., Giannoni, F., Magli, G., Piccione, P.: Class. Quantum Gravity 20, 4943 (2003)

    Article  ADS  Google Scholar 

  10. Szekeres, P., Iyer, V.: Phys. Rev. D 47, 4362 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Barve, S., Singh, T.P., Witten, L.: Gen. Relativ. Gravit. 32, 697 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Coley, A.A., Tupper, B.O.J.: Phys. Rev. D 29, 2701 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lake, K.: Phys. Rev. D 26, 518 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. Giamb, R.: Class. Quantum Gravity 22, 2295 (2005)

    Article  ADS  Google Scholar 

  15. Bhattacharya, S., Goswami, R., Joshi, P.S.: Int. J. Mod. Phys. D 20, 1123 (2011)

    Article  ADS  MATH  Google Scholar 

  16. Bhattacharya, S.: arXiv:1107.4112 [gr-qc]

  17. Ori, A., Piran, T.: Phys. Rev. Lett. 59, 2137 (1987)

    Article  ADS  Google Scholar 

  18. Ori, A., Piran, T.: Phys. Rev. D 42, 1068 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  19. Foglizzo, T., Henriksen, R.: Phys. Rev. D 48, 4645 (1993)

    Article  ADS  Google Scholar 

  20. Mena, F.C., Nolan, B.C., Tavakol, R.: Phys. Rev. D 70, 084030 (2004)

    Article  ADS  Google Scholar 

  21. Gosh, S.G., Dadhich, N.: Gen. Relativ. Gravit. 35, 359 (2003)

    Article  ADS  Google Scholar 

  22. Harko, T., Cheng, S.K.: Phys. Lett. A 226, 249 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gundlach, C., Martn-Garca, J.M.: Living Rev. Relativ. 10, 5 (2007)

    ADS  Google Scholar 

  24. Schunck, F.E., Mielke, E.W.: Class. Quantum Gravity 20, R301 (2003); arXiv:0801.0307 [astro-ph]

  25. Giamb, R., Giannoni, F., Magli, G.: J. Math. Phys. 49, 042504 (2008)

    Article  MathSciNet  Google Scholar 

  26. Giamb, R., Giannoni, F., Magli, G.: Gen. Relativ. Gravit. 41, 21 (2009)

    Article  ADS  Google Scholar 

  27. Ganguly, K., Banerjee, N.: Gen. Relativ. Gravit. 43, 2141 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Janis, A.I., Newman, E.T., Winicour, J.: Phys. Rev. Lett 20, 878 (1968)

    Article  ADS  Google Scholar 

  29. Wyman, M.: Phys. Rev. D 24, 839 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Xanthopoulos, B.C., Zannias, T.: Phys. Rev. D 40, 2564 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bergmann, O., Leipnik, R.: Phys. Rev. 107, 1157 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  32. Buchdahl, H.A.: Phys. Rev. 115, 1325 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Choptuik, M.: Phys. Rev. Lett. 70, 9 (1993)

    Article  ADS  Google Scholar 

  34. Christodoulou, D.: Ann. Math. 140, 607 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pereira, F.I.M., Chan, R.: Int. J. Mod. Phys. D 17, 2143 (2008); arXiv:0803.2628 [gr-qc]

  36. Jankiewicz, M., Sen, A.A.: arXiv:0602.085 [gr-qc]

  37. Mazumdar, A., Panda, S., Perez-Lorenzana, A.: Nucl. Phys. B 614, 101 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Piao, Y.-S., Cai, R.-G., Zhang, X., Zhang, Y.-Z.: Phys. Rev. D 66, 121301 (2002)

    Article  ADS  Google Scholar 

  39. Fairbairn, M., Tytgat, M.H.G.: Phys. Lett. B 546, 1 (2002)

    Article  ADS  MATH  Google Scholar 

  40. Sen, A.: Int. J. Mod. Phys. A, 20, 5513 (2005); arXiv: 0410.103 [hep-th]

  41. Aguirregabiria, J.M., Lazkoz, R.: Phys. Rev. D 69, 123502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. Goswami, R., Joshi, P., Singh, P.: Phys. Rev. Lett. 96, 031302 (2006)

    Article  ADS  Google Scholar 

  43. Hayward, S.A.: Phys. Rev. D 53, 1938 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  44. Misner, C.W., Sharp, D.H.: Phys. Rev. 136, B571 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  45. Bak, D., Rey, S.J.: Class. Quantum Gravity 17, L83 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Singh, T.P.: Phys. Rev. D 58, 024004 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  47. Malec, E., Murchadha, N.: Phys. Rev. D 47, 1454 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  48. Goswami, R., Joshi, P.: arXiv: 0410.144 [gr-qc] (2004)

  49. Ziaie, A.H., Atazadeh, K., Tavakoli, Y.: Class. Quantum Gravity 27, 075016 (2010); arXiv: 1003.1725 [gr-qc]

    Google Scholar 

  50. Ziaie, A.H., Atazadeh, K., Rasouli, S.M.M.: arXiv: 1106.5638 [gr-qc] (2011)

  51. Joshi, P.S., Goswami, R.: Class. Quantum Gravity 24, 2917 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Goswami, R., Joshi, P.S., Vaz, C., Witten, L.: Phys. Rev. D 70, 084038 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  53. Joshi, P.S., Goswami, R.: arXiv:0711.0426v1 [gr-qc]

  54. Joshi, P.S., Dwivedi, I.H.: Class. Quantum Gravity 16, 41 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Wang, A., Wu, Y.: Gen. Relativ. Gravity 31, 107 (1999)

    Article  ADS  MATH  Google Scholar 

  56. Garousi, M.R.: Nucl. Phys. B 584, 284 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Bergshoeff, E.A., de Roo, M., de Wit, T.C., Eyras, E., Panda, S.: J. High Energy Phys. 05, 009 (2000)

    Article  ADS  Google Scholar 

  58. Akhoury, R., Garfinklea, D., Saotomea, R.: J. High Energy Phys. 1104, 096 (2011); arXiv: 1103.0290 [gr-qc]

  59. Frolov, A., Kofman, L., Starobinsky, A.: Phys. Lett. B 545, 8 (2002); arXiv: 0204187 [hep-th]

  60. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  61. Carr, J.: Applications of Center Manifold Theorem. Springer, Berlin (1981)

    Book  Google Scholar 

  62. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, Berlin (1983)

    Google Scholar 

  63. Liddle, A.R., Scherrer, R.J.: Phys. Rev. D 59, 023509 (1999)

    Article  ADS  Google Scholar 

  64. Tippett, B.K., Hussain, V.: Phys. Rev. D 84, 104031 (2011)

    Article  ADS  Google Scholar 

  65. Sen, A.A.: Phys. Rev. D 74, 043501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  66. Tsamparlis, M., Paliathanasisa, A.: arXiv:1111.5567 [gr-qc]

  67. Goswami, R., Joshi, P.: arXiv: 0410.144 [gr-qc]

  68. Tipler, F.J.: Phys. Lett. A 67, 8 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  69. Tipler, F.J., Clarke, C.J.S., Ellis, G.F.R.: In: Held, A. (ed.) General Relativity and Gravitation, 2nd edn, p. 97. Plenum, New York (1980)

    Google Scholar 

  70. Clarke, C.J.S.: The Analysis of Space-Time Singularities. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  71. Feinstein, A.: Phys. Rev. D 66, 063511 (2002)

    Article  ADS  Google Scholar 

  72. Guo, Z.-K., Piao, Y.S., Cai, R.G., Zhang, Y.Z.: Phys. Rev. D 68, 043508 (2003)

    Article  ADS  Google Scholar 

  73. Ambramo, L.R.W., Finelli, F.: Phys. Lett. B 575, 165 (2003)

    Article  ADS  Google Scholar 

  74. Copeland, E.J., Garousi, M.R., Sami, M., Tsujikawa, S.: Phys. Rev. D 71, 043003 (2005)

    Article  ADS  Google Scholar 

  75. Quiros, I., Gonzalez, T., Gonzalez, D., Napoles, Y., Garca-Salcedo, R., Moreno, C.: Class. Quantum Gravity 27, 215021 (2010)

    Article  ADS  Google Scholar 

  76. Sen, A.: J. High Energy Phys. 12, 021 (1998)

    ADS  Google Scholar 

  77. Sen, A.A.: J. High Energy Phys. 04, 048 (2002)

    Article  ADS  Google Scholar 

  78. Sen, A.A.: J. High Energy Phys. 07, 065 (2002)

    Article  ADS  Google Scholar 

  79. Sen, A.A.: J. High Energy Phys. 16, 281 (1989)

    Google Scholar 

  80. Ghate, S.H., Saraykar, R.V., Patil, K.D.: Pramana J. Phys. 53, 253 (1999)

    Article  Google Scholar 

  81. Folomeev, V.: arXiv:1205.2974 [astro-ph]

  82. Folomeev, V., Singleton, D.: Phys. Rev. D 85, 064045 (2012); arXiv:1112.1786 [astro-ph]

  83. Folomeev, V.: Phys. Rev. D 85, 024008 (2012); arXiv:1108.3395 [astro-ph]

  84. Tavakoli, Y., Marto, J., Ziaie, A.H., Vargas Moniz, P.: Semiclassical gravitational collapse with tachyon field and barotropic fluid (in preparation)

Download references

Acknowledgments

The authors would like to thank P. Joshi, A. Khaleghi, C. Kiefer, F. C. Mena, A. Vikman, and J. Ward for making useful suggestions and comments. They are also grateful to the referee for the useful comments and suggestions on the issue of energy conditions. YT is supported by the Portuguese Agency Fundação para a Ciência e Tecnologia through SFRH/BD/43709/2008. This research work was also supported by the grant CERN/FP/109351/2009 and CERN/FP/116373/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Marto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli, Y., Marto, J., Ziaie, A.H. et al. Gravitational collapse with tachyon field and barotropic fluid. Gen Relativ Gravit 45, 819–844 (2013). https://doi.org/10.1007/s10714-013-1503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1503-3

Keywords

Navigation