Skip to main content
Log in

Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Homozygous transgenic cotton (Gossypium hirsutum L.) plants that accumulated glycinebetaine (GB) in larger quantities were more tolerant to salt than wild-type (WT) plants. Four transgenic lines, namely 1, 3, 4, and 5, accumulated significantly higher levels of GB than WT plants did both before and after salt stress. At 175 and 275 mM NaCl, seeds of all the transgenic lines germinated earlier and recorded a higher final germination percentage, and the seedlings grew better, than those of the WT. Under salt stress, all the lines showed some characteristic features of salt tolerance, such as higher leaf relative water content (RWC), higher photosynthesis, better osmotic adjustment (OA), lower percentage of ion leakage, and lower peroxidation of the lipid membrane. Levels of endogenous GB in the transgenic plants were positively correlated with RWC and OA. The results indicate that GB in transgenic cotton plants not only maintains the integrity of cell membranes but also alleviates osmotic stress caused by high salinity. Lastly, the seed cotton yield of transgenic lines 4 and 5 was significantly higher than that of WT plants in saline soil. This research indicates that betA gene has the potential to improve crop’s salt tolerance in areas where salinity is limiting factors for agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BADH:

Betaine aldehyde dehydrogenase

CDH:

Choline dehydrogenase

CMO:

Choline monooxygenase

GB:

Glycinebetaine

MDA:

Malondialdehyde

OA:

Osmotic adjustment

ROS:

Reactive oxygen species

RWC:

Relative water content

SOD:

Superoxide dismutase

WT:

Wild-type

References

  • Alia H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16(2):155–161

    Article  PubMed  CAS  Google Scholar 

  • Allard F, Houde M, Krol M, Ivanov A, Huner N, Sarhan F (1998) Betaine improves freezing tolerance in wheat. Plant Cell Physiol 39(11):1194–1202

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21(1):1–30

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199(5):361–376

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) c(3) non-halophytes. Plant Physiol 95(2):628–635

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5(3):250–257

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13(9):499–505

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34(1):1–20

    Article  PubMed  Google Scholar 

  • Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 326(1):61–73

    Article  CAS  Google Scholar 

  • Dong HZ, Xin CS, Tang W, Li WJ, Zhang DM, Wen SM (2006) Seasonal changes of salinity and nutrients in the coastal saline soil in Dong-ying, Shandong, and their effects on cotton yield. Cotton Sci 18(6):362–366 in chinese

    Google Scholar 

  • Einset J, Connolly E (2009) Glycine betaine enhances extracellular processes blocking ROS signaling during stress. Plant Signal Behav 4(3):197–199

    Article  PubMed  CAS  Google Scholar 

  • Einset J, Nielsen E, Connolly E, Bones A, Sparstad T, Winge P, Zhu J (2007) Membrane-trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiol Plantarum 130(4):511–518

    Article  CAS  Google Scholar 

  • Einset J, Winge P, Bones A, Connolly E (2008) The FRO2 ferric reductase is required for glycine betaine’s effect on chilling tolerance in Arabidopsis roots. Physiol Plantarum 134(2):334–341

    Article  CAS  Google Scholar 

  • Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9(12):2183–2196

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Li JS, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98(20):11444–11449

    Article  PubMed  CAS  Google Scholar 

  • Gossett D, Millhollon E, Lucas M, Banks S, Marney M-M (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep 13(9):498–503

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–180

    Article  CAS  Google Scholar 

  • Grumet R, Hanson AD (1986) Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley. Aust J Plant Physiol 18:317–327

    Google Scholar 

  • Hayashi H (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12(1):133–142

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Sakamoto A, Nonaka H, Chen T, Murata N (1998) Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J Plant Res 111(2):357–362

    Article  CAS  Google Scholar 

  • Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185

    Article  PubMed  CAS  Google Scholar 

  • Janardhan KV, Murthy RSP, Giriraja K, Panchaksharaiah S (1976) Salt tolerance of cotton and potential use of saline water for irrigation. Curr Sci 45:334–336

    CAS  Google Scholar 

  • Janardhan KV, Panchaksharaiah S, Balkishna KR, Patil BN (1979) Effect of various K/Na ratios in saline irrigation water on grain yield and ionic composition of wheat. Curr Sci 48:739–771

    Google Scholar 

  • Kathuria H, Giri J, Nataraja K, Murata N, Udayakumar M, Tyagi A (2009) Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol J 7(6):512–526

    Article  PubMed  CAS  Google Scholar 

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase AM, Takabe T, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23(1):107–114

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136(1):2843–2854

    Article  PubMed  CAS  Google Scholar 

  • Landfald B, Strom AR (1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165(3):849–855

    PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress, 2nd edn. Academic Press, New York

    Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20(3):233–248

    Article  CAS  Google Scholar 

  • Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol Biochem 36(10):767–772

    Article  CAS  Google Scholar 

  • Martìnez J, Lutts S, Schanck A, Bajji M, Kinet J (2004) Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L? J Plant Physiol 161(9):1041–1051

    Article  PubMed  Google Scholar 

  • Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58(1–3):216–222

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76

    Article  CAS  Google Scholar 

  • Morant-Manceau A, Pradier E, Tremblin G (2004) Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. J Plant Physiol 161(1):25–33

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S (2007) Photoinhibition of photosystem II under environmental stress. BBA Bioenerg 1767(6):414–421

    Article  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. BBA Bioenerg 1757(7):742–749

    Article  CAS  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141(2):758–765

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40(4):474–487

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Chen THH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47(6):706–714

    Article  PubMed  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen THH (2007) Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30(8):994–1005

    Article  PubMed  CAS  Google Scholar 

  • Premachandra GS, Saneoka H, Fujita K, Ogata S (1992) Leaf water relations, osmotic adjustment, cell membrane stability, epi-cuticular wax load and growth as affected by increasing water deficits in Sorghum. J Exp Bot 43:1569–1576

    Article  CAS  Google Scholar 

  • Prochazkova D, Wilhelmova N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plantarum 51(3):401–406

    Article  CAS  Google Scholar 

  • Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166(1):141–149

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulphonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci India 86(3):407–421

    CAS  Google Scholar 

  • Sakamoto A, Alia MurataN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38(6):1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol 107(2):631–638

    PubMed  CAS  Google Scholar 

  • Sharmila P, Phanindra M, Anwar F, Singh K, Gupta S, Pardha Saradhi P (2009) Targeting prokaryotic choline oxidase into chloroplasts enhance the potential of photosynthetic machinery of plants to withstand oxidative damage. Plant Physiol Biochem 47(5):391–396

    Article  PubMed  CAS  Google Scholar 

  • Storey R (1995) Salt tolerance, ion relations and the effects of root medium on the response of citrus to salinity. Aust J Plant physiol 22:101–114

    Article  CAS  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161(3):613–619

    Article  CAS  Google Scholar 

  • Sun XF, Liu YL (2001) Test on criteria of evaluating salt tolerance of cotton cultivars. Acta Agron Sin 27(6):794–801 in chinese

    Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13(4):178–182

    Article  PubMed  CAS  Google Scholar 

  • Thert G (1983) Effect s of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant Soil 73:247–256

    Article  Google Scholar 

  • Troll W, Cannan RK (1953) A modified photometric ninhydrin method for the analysis of amino and imino acids. J Biol Chem 200(2):803–811

    PubMed  CAS  Google Scholar 

  • Yang XH, Lu CM (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plantarum 124(3):343–352

    Article  CAS  Google Scholar 

  • Yang XH, Liang Z, Lu CM (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138(4):2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225(3):719–733

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Liang Z, Wen XG, Lu CM (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66(1–2):73–86

    Article  PubMed  CAS  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508–514

    PubMed  CAS  Google Scholar 

  • Zhang J, Nguyen H, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50(332):291–302

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Project for Transgenic Plant Research and Industrialization of China (2008ZX08005-4) and Scientific and technological project in Shandong Province (2009GG10009010) and Cotton Improved Variety Project of Shandong Province (2007LZ003). We would also like to thank International Science Editing for assistance in language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., Guo, N., Lian, L. et al. Improved salt tolerance and seed cotton yield in cotton (Gossypium hirsutum L.) by transformation with betA gene for glycinebetaine synthesis. Euphytica 181, 1–16 (2011). https://doi.org/10.1007/s10681-011-0354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0354-9

Keywords

Navigation