Skip to main content

Advertisement

Log in

Major inputs and mobility of potentially toxic elements contamination in urban areas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil quality in urban areas is affected by anthropogenic activities, posing a risk to human health and ecosystems. Since the pseudo-total concentrations of potentially toxic elements may not reflect their potential risks, the study of element mobility is very important on a risk assessment basis. This study aims at characterising the distribution and major sources of 34 elements in two Portuguese urban areas (Lisbon and Viseu), with different geological characteristics, industrial and urban development processes. Furthermore, the potential availability of As, Co, Cr, Cu, Ni, Pb and Zn was assessed, by measuring the fraction easily mobilised. Lisbon is enriched in elements of geogenic and anthropogenic origin, whereas in the smaller city, the high levels observed are mainly related to a geogenic origin. Background values can be more relevant than the dimension of the city, even when anthropogenic components may be present, and this parameter should be considered when comparing results from different cities. Regarding the potential available fraction, a high variability of results was observed for elements and for sampling sites with an influence of the soil’s general characteristics. Elements showing very high concentrations due to geological reasons presented, in general, a low mobility and it was not dependent on the degree of contamination. For elements with major anthropogenic origin, only Zn was dependent on the pseudo-total content. Yet, the highest available fractions of some elements, both with major geogenic and anthropogenic origin, were observed in specific contaminated samples. Therefore, a site-specific evaluation in urban soils is important due to the high spatial variability and heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cachada, A., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2012). Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environmental Monitoring and Assessment, 184, 15–32. doi:10.1007/s10661-011-1943-8.

  • Cachada, A., Rodrigues, S. M., Mieiro, C., Ferreira da Silva, E., Pereira, E., & Duarte, A. C. (2009). Controlling factors and environmental implications of mercury contamination in urban and agricultural soils under a long term influence of a chlor-alkali plant in the North-West Portugal. Environmental Geology, 57, 91–98. doi:10.1007/s00254-008-1284-2.

    Article  CAS  Google Scholar 

  • Chen, T., Liu, X., Zhu, M., Zhao, K., Wu, J., Xu, J., & Huang, P. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67–78. doi:10.1016/j.envpol.2007.03.004.

    Article  CAS  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Díaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality, 36, 70–79. doi:10.2134/jeq2006.0254.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, A. C., et al. (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Analytica Chimica Acta, 565, 63–72. doi:10.1016/j.aca.2006.02.014.

    Article  CAS  Google Scholar 

  • EEA (European Environment Agency). (2006). Urban sprawl in Europe—The ignored challenge. EEA report no 10/2006. Copenhagen, Denmark.

  • Ferreira, A., Inácio, M. M., Morgado, P., Batista, M. J., Ferreira, L., Pereira, V., & Pinto, M. S. (2001). Low-density geochemical mapping in Portugal. Applied Geochemistry, 16, 11–12. doi:10.1016/S0883-2927(01)00037-3.

    Article  Google Scholar 

  • ISO10390 (1994). ISO Method 10390:1994 Soil quality - Determination of pH.

  • ISO13536. (1995). ISO method 13536:1995. Soil quality—determination of the potential cation exchange capacity and exchangeable cations using barium chloride solution buffered at pH = 8.1.

  • ISO10381. (2002). ISO method 10381-1:2002. Soil quality sampling part 1: Guidance on the design of sampling programmes.

  • Krasnodębska-Ostręga, B., Emons, H., & Golimowski, J. (2004). Element fractionation in soil from urban-industrialized areas using sequential extraction. Journal of Soils & Sediments, 4, 43–48. doi:10.1007/BF02990828.

    Article  Google Scholar 

  • Ljung, K., Otabbong, E., & Selinus, O. (2006). Natural and anthropogenic metal inputs to soils in urban Uppsala, Sweden. Environmental Geochemistry and Health, 28, 353–364. doi:10.1007/s10653-005-9031-z.

    Article  CAS  Google Scholar 

  • Madrid, L., Díaz-Barrientos, E., Reinoso, R., & Madrid, F. (2004). Metals in urban soils of Sevilla: Seasonal changes and relations with other soil components and plant contents. European Journal of Soil Science, 55, 209–217. doi:10.1046/j.1365-2389.2004.00589.x.

    Article  CAS  Google Scholar 

  • Peltola, P., & Åström, M. (2003). Urban geochemistry: A multimedia and multielement survey of a small town in northern Europe. Environmental Geochemistry and H, 25, 397–419. doi:10.1023/B:EGAH.0000004553.56489.0c.

    Article  CAS  Google Scholar 

  • Poggio, L., Vrscaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689. doi:10.1016/j.envpol.2008.08.009.

    Article  CAS  Google Scholar 

  • Pouyat, R. V., Yesilonis, I. D., Szlavecz, K., Csuzdi, C., Hornung, E., et al. (2008). Response of forest soil properties to urbanization gradients in three metropolitan areas. Landscape Ecology, 23, 1187–1203. doi:10.1007/s10980-008-9288-6.

    Article  Google Scholar 

  • Rodrigues, S., Pereira, M. E., Sarabando, L., Lopes, L., Cachada, A., & Duarte, A. (2006). Spatial distribution of total Hg in urban soils from an Atlantic coastal city (Aveiro, Portugal). Science of the Total Environment, 368, 40–46. doi:10.1016/j.scitotenv.2005.09.088.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Urquhart, G., Hossak, I., Pereira, M. E., Duarte, A. C., Davidson, C., et al. (2009). The influence of anthropogenic and natural factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal. Environmental Chemical Letters, 7, 141–148. doi:10.1007/s10311-008-0149-y.

    Article  CAS  Google Scholar 

  • Salminen, R. (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Geological survey of Finland. Electronic version: http://www.gtk.fi/publ/foregsatlas/index.php.

  • Tijhuis, L., Brattli, B., & Saether, O. M. (2002). A geochemical survey of topsoil in the city of Oslo, Norway. Environmental Geochemistry and Health, 24, 67–94. doi:10.1023/A:1013979700212.

    Article  CAS  Google Scholar 

  • Tokalioğlu, Ş., Kartal, Ş., & Gϋltekin, A. (2006). Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method. International Journal of Environmental Analytical Chemistry, 86, 417–430. doi:10.1080/03067310500352387.

    Article  Google Scholar 

  • Yesilonis, I. D., Pouyat, R. V., & Neerchal, N. K. (2008). Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines. Environmental Polutionl, 156, 723–731. doi:10.1016/j.envpol.2008.06.010.

    Article  CAS  Google Scholar 

  • Wilcke, W., Muller, S., Kanchanakool, N., Niamskul, C., & Zech, W. (1998). Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma, 86, 211–228. doi:10.1016/S0016-7061(98)00045-7.

    Article  CAS  Google Scholar 

  • Zheng, Y.-M., Chen, T.-B., & He, J.-Z. (2008). Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. Journal of Soils & Sediments, 8, 51–58. doi:10.1065/jss2007.08.2455DOI:dx.doi.org.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CESAM and by the Fundação para a Ciência e Tecnologia through the research project POCTI/CTA/44851/2002:SOLURB (‘Towards a methodology for the assessment of environmental quality in urban soils’) and individual research grants attributed to A. Cachada (SFRH/BD/38418/2007), P. Pato (SFRH/BPD/35068/2007), C. Mieiro (SFRH/BD/28733/2006) and T. Rocha-Santos (SFRH/BPD/65410/2009). The authors wish to thank Pedro Faria for the English revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cachada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Descriptive statistics of PTE concentrations in Lisbon and Viseu urban soils (DOC 127 kb)

Table S2

Significance level of Kolmogorov–Smirnov test (K-S p) and Shapiro–Wilk’s test for normality (S-W p), skewness, kurtosis and outlier number of the raw, log-transformed and Box-Cox transformed data of PTEs (DOC 175 kb)

Table S3

Spearman correlations between PTEs in Lisbon (dark grey) and Viseu (light grey) urban soils (DOC 140 kb)

Table S4

Spearman correlations between soils general parameters and PTE in Lisbon urban soils (DOC 69 kb)

Table S5

Spearman correlations between soil general parameters and PTE in Viseu urban soils (DOC 45 kb)

Table S6

Concentrations (in milligrams per kilogram) of the pseudo-total (AR) content, the HOAc extraction and available fraction (%Av) for the selected samples and elements (DOC 106 kb)

Table S7

Spearman correlations between fraction available and general parameters, in Lisbon soils (DOC 37 kb)

Table S8

Spearman correlations between fraction available and general parameters, in Viseu soils (DOC 33 kb)

Table S9

Spearman correlations between the pseudo-total content (AR) and available fraction (Av) (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cachada, A., Dias, A.C., Pato, P. et al. Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ Monit Assess 185, 279–294 (2013). https://doi.org/10.1007/s10661-012-2553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2553-9

Keywords

Navigation