Skip to main content

Advertisement

Log in

Influence of coal-based thermal power plants on the spatial–temporal variability of tropospheric NO 2 column over India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The oxides of nitrogen—NO x (NO and NO2)—are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO2 in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 1015 molecules/cm2). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO2 over India show a large seasonal variability that is also observed in the ground NO2 data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO2 (×1015 molecules/cm2) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO2 increases by 0.794 ± 0.12 (×1015 molecules/cm2; annual) per GW compared to a previous estimate of 0.014 (×1015 molecules/cm2) over India. The increase of tropospheric NO2 per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×1015 molecules/cm2) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO2 due to various controlling factors which is discussed here. The recent increasing trend (2005–2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acarreta, J. R., de Haan, J. F., & Stammes, P. (2004). Cloud pressure retrieval using the O2–O2 absorption band at 477 nm. Journal of Geophysical Research, 109, D05204. doi:10.1029/2003JD003915.

    Article  Google Scholar 

  • Beig, G., & Brasseur, G. P. (2006). Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon. Geophysical Research Letters, 33, L07808. doi:10.1029/2005GL024949.

    Article  Google Scholar 

  • Beig, G., Gunthe, S., & Jadhav, D. (2007). Simultaneous measurements of ozone and its precursors on a diurnal scale at a semi urban site in India. Journal of Atmospheric Chemistry, 57(3), 239–253 (15).

    Article  CAS  Google Scholar 

  • Boersma, K. F., et al. (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry Physics, 7, 2103B2118.

    Article  Google Scholar 

  • Boersma, K. F., Eskes, H. J., & Brinksma, E. J. (2004). Error analysis for tropospheric NO2 retrieval from space. Journal of Geophysical Research, 109, D04311. doi:10.1029/2003JD003962.

    Article  Google Scholar 

  • Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., & van der A, R. J. (2008). Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space. Journal of Geophysical Research, 113, D16S26. doi:10.1029/2007JD008816.

    Article  Google Scholar 

  • Brasseur, G. P., et al. (2006). Impact of climate change on the future chemical composition of the global troposphere. Journal of Climate, 19, 3932–3951.

    Article  Google Scholar 

  • Bucsela, E. J., Celarier, E. A., Wenig, M. O., Gleason, J. F., Veefkind, J. P., Boersma, K. F., et al. (2006). Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1245–1258. Special Issue on the EOS Aura Mission.

    Article  Google Scholar 

  • Bucsela, E. J., Perring, A. E., Cohen, R. C., Boersma, K. F., Celarier, E. A., Gleason, J. F., et al. (2008). Comparison of tropospheric NO2 from in-situ aircraft measurements with near-real time and standard product data from OMI. Journal of Geophysical Research, 113, D16S31. doi:10.1029/2007JD008838.

    Article  Google Scholar 

  • Celarier, E. A., et al. (2008). Validation of ozone monitoring instrument nitrogen dioxide columns. Journal of Geophysical Research, 113, D15S15. doi:10.1029/2007JD008908.

    Article  Google Scholar 

  • Chakraborty, N., Mukherjee, I., Santra, A. K., Chowdhury, S., Chakraborty, S., Bhattacharya, S., et al. (2008). Measurement of CO2, CO, SO2, and NO emissions from coal-based thermal power plants in India. Atmospheric Environment, 42, 1073B1082.

    Article  Google Scholar 

  • Choudhury, S., Rajpal, H., Saraf, A. K., et al. (2007). Mapping and forecasting of North Indian winter fog: An application of spatial technologies. International Journal of Remote Sensing, 28(16), 3649–3663.

    Article  Google Scholar 

  • CIESIN (2007). Center for International Earth Science Information Network Columbia University; United Nations Food and Agriculture Programme (FAO); and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World: Future Estimates (GPWFE). Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. Available at http://sedac.ciesin.columbia.edu/gpw.

    Google Scholar 

  • CPCB (2000). Central Pollution Control Board, 2000. Air quality status and trends in India. National Ambient Air Quality Monitoring Series, NAAQMS/14/1999B2000.

  • Fagbeja, M. A., Chatterton, T. J., Longhurst, J. W. S., et al. (2008). Air pollution and management in the Niger Delta—Emerging issues, Conference Information: 16th International Conference on Modelling, Monitoring and Management of Air Pollution, Date: SEP, 2008 WessexInstTechnolSkiathos GREECE. Air Pollution, XVI, 116, 207–216.

    Article  CAS  Google Scholar 

  • Frost, G. J., et al. (2006). Effects of changing power plant NO x emissions on ozone in the eastern United States: Proof of concept. Journal of Geophysical Research, 111, D12306. doi:10.1029/2005JD006354.

    Article  Google Scholar 

  • Garg, A., Shukla, P. R., Bhattacharya, S., & Dadhwal, V. K. (2001). Subregion (district) and sector level SO2 and NO X emissions for India: Assessment of inventories and mitigation flexibility. Atmospheric Environment, 35, 703B 713. doi:10.1016/S1352-2310(00)00316-2.

    Google Scholar 

  • Ghude, S. D., Fadnavis, S., Beig, G., Polade, S. D., & van der A, R. J. (2008). Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. Journal of Geophysical Research, 113, D20305. doi:10.1029/2007JD009615.

    Article  Google Scholar 

  • Hameed, S., et al. (2000). On the widespread winter fog in northeastern Pakistan and India. Geophysical Research Letters, 27(13), 1891B1894.

    Article  Google Scholar 

  • Jaegle, L., Steinberger, L., Martin, R. V., & Chance, K. (2005). Global partitioning of NO x sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discussions, 130, 407B–423B. doi:10.1039/b502128f.

    Article  CAS  Google Scholar 

  • Jamil, S., Abhilash, P. C., Singh, A., Singh, N., & Behl, H. M. (2009). Fly ash trapping and metal accumulating capacity of plants: Implication for green belt around thermal power plants. Landscape And Urban Planning, 92(2),136–147.

    Article  Google Scholar 

  • Kim, S.-W., Heckel, A., McKeen, S. A., Frost, G. J., Hsie, E.-Y., Trainer, M. K., et al. (2006). Satellite observed U.S. power plant NO x emission reductions and their impact on air quality. Geophysical Research Letters, 33, L22812. doi:10.1029/2006GL027749.

    Article  Google Scholar 

  • Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Richter, A., Ladstätter-Weißenmayer, A., & Burrows, J. P. (2004). Analysis of tropospheric NO x over Asia using the model of atmospheric transport and chemistry (MATCH-MPIC) and GOME-satellite observations. Atmospheric Environment, 38, 581B596.

    Article  Google Scholar 

  • Kunhikrishnan, T., Lawrence, M. G., von Kuhlmann, R., Wenig, M. O., Asman, W. A. H., Richter, A., et al. (2006). Regional NO x emission strength for the Indian subcontinent and the impact of emissions from India and neighboring countries on regional O3 chemistry. Journal of Geophysical Research, 111, D15301. doi:10.1029/2005JD006036.

    Article  Google Scholar 

  • Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K. F., et al. (2010). Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. Journal of Geophysical Research-Atm, 115, D05302.

    Article  Google Scholar 

  • Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., et al. (2008). Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument. Journal of Geophysical Research, 113, D16308. doi:10.1029/2007JD009235.

    Article  Google Scholar 

  • Levelt, P. F., et al. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1199B1208.

    Google Scholar 

  • Lin, J.-T., McElroy, M. B., & Boersma, K. F. (2009). Constraint of anthropogenic NO x emissions in China from different sectors: A new methodology using multiple satellite retrievals. Atmospheric Chemistry Physics Discussion, 9, 19205–19241.

    Article  Google Scholar 

  • Ludwig, J., Meixner, F. X., Vogel, B., & Förster, J. (2001). Soil–air exchange of nitric oxide: An overview of processes, environmental factors, and modelling studies. Biogeochemistry, 52, 225B–257B.

    Article  CAS  Google Scholar 

  • Martin, R. V., et al. (2002). An improved retrieval of tropospheric nitrogen dioxide from GOME. Journal of Geophysical Research, 107(D20), 4437. doi:10.1029/2001JD001027.

    Article  Google Scholar 

  • Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., & Evans, M. J. (2003). Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. Journal of Geophysical Research, 108(D17), 4537. doi:10.1029/2003JD003453.

    Article  Google Scholar 

  • Martin, R. V., Sauvage, B., Folkins, I., Sioris, C. E., Boone, C., Bernath, P., et al. (2007). Space-based constraints on the production of nitric oxide by lightning. Journal of Geophysical Research, 112, D09309. doi:10.1029/2006JD007831.

    Article  Google Scholar 

  • Mijling, B., van der A, R. J., Boersma, K. F., Van Roozendael, M., De Smedt, I., & Kelder, H. M. (2009). Reductions of NO2 detected from space during the 2008 Beijing Olympic Games. Geophysical Research Letters, 36, L13801. doi:10.1029/2009GL038943.

    Article  Google Scholar 

  • Platt, U. (1994). Differential optical absorption spectroscopy (DOAS). In M. Siegrist (Ed.), Air Monitoring by Spectroscopic Techniques. New York: Wiley.

    Google Scholar 

  • Platt, U., & Stutz, J. (2006). Differential Optical Absorption Spectroscopy (DOAS), Principle and Applications. Heidelberg: Springer.

    Google Scholar 

  • Prasad, A. K. (2007). Multi-sensor appraisal of aerosols, vegetation and monsoon dynamics over Indian sub-continent. Ph.D. Thesis, Indian Institute of Technology Kanpur, 1–238 (Unpublished).

  • Prasad, A. K., & Singh, R. P. (2007). Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sensing of Environment, 107(1–2), 109–119.

    Article  Google Scholar 

  • Prasad, A. K., Singh, R. P., & Singh, A. (2006a). Seasonal climatology of aerosol optical depth over the Indian sub-continent: Trend and departures in recent years. International Journal of Remote Sensing, 27(12), 2323–2329.

    Article  Google Scholar 

  • Prasad, A. K., Singh, R. P., & Kafatos, M. (2006b). Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophysical Research Letters, 33, L05805. doi:10.1029/2005GL023801.

    Article  Google Scholar 

  • Ramanathan, V., & Ramana, M. V. (2005). Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Ganges plains. Pure and Applied Geophysics, 162, 1609–1626.

    Article  Google Scholar 

  • Richter, A., Burrows, J. P., & Nüß, H., Granier C., Niemeier, U. (2005). Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437, 129–132. doi:10.1038/nature04092.

    Article  CAS  Google Scholar 

  • Saraf, N., & Beig, G. (2004). Long-term trends in tropospheric ozone over the Indian tropical region. Geophysical Research Letters, 31, L05101. doi:10.1029/2003GL018516.

    Article  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. M. (2008). Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City. Environmental Monitoring and Assessment, 142(1–3), 269–278.

    Article  CAS  Google Scholar 

  • Singh, R. K., & Agrawal, M. (2010). Atmospheric depositions around a heavily industrialized area in a seasonally dry tropical environment of India. Environmental Pollution, 138(1), 142–152.

    Article  Google Scholar 

  • Sitnov, S. (2009). Analysis of spatial–temporal variability of tropospheric NO2 column over Moscow megapolis using OMI spectrometer (Aura satellite) data. Doklady Earth Sciences, 429(2), 1511–1517.

    Article  Google Scholar 

  • Tie, X., Zhang, R., Brasseur, G., Emmons, L., & Lei, W. (2001). Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere. Journal of Geophysical Research, 106(D3), 3167B–3178B.

    Article  CAS  Google Scholar 

  • van Aardenne, J. A., Carmichael, G. R., Levy, H. II, Streets, D., & Hordijk, L. (1999). Anthropogenic NO x emissions in Asia in the period 1990 B 2002. Atmospheric Environment, 33, 633B–646B.

    Article  Google Scholar 

  • van der A, R. J., Eskes, H. J., Boersma, K. F., van Noije, T. P. C., Van Roozendael, M., De Smedt, I., et al. (2008). Trends, seasonal variability and dominant NO x source derived from a ten year record of NO2 measured from space. Journal of Geophysical Research, 113, D04302. doi:10.1029/2007JD009021.

    Article  Google Scholar 

  • van der A, R. J., Peters, D. H. M. U., Eskes, H. J., Boersma, K. F., Van Roozendael, M., De Smedt, I., et al. (2006). Detection of the trend and seasonal variation in tropospheric NO2 over China. Journal of Geophysical Research, 111, D12317. doi:10.1029/2005JD006594.

    Article  Google Scholar 

  • Vidot, J., Jourdan, O., Kokhanosvky, A. A., Szczap, F., Giraud, V., & Rozanov, V. V. (2010). Retrieval of tropospheric NO2 columns from satellite measurements in presence of cirrus: A theoretical sensitivity study using SCIATRAN and prospect application for the A-Train. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(4), 586–601.

    Article  CAS  Google Scholar 

  • Wenig, M. O., Cede, A. M., Bucsela, E. J., Celarier, E. A., Boersma, K. F., Veefkind, J. P., et al. (2008). Validation of OMI tropospheric NO2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center. Journal of Geophysical Research, 113, D16S45. doi:10.1029/2007JD008988.

    Article  Google Scholar 

  • Zyrichidou, I., Koukouli, M. E., Balis, D. S., et al. (2009). Satellite observations and model simulations of tropospheric NO2 columns over south-eastern Europe. Atmospheric Chemistry and Physics, 9(16), 6119–6134.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup K. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A.K., Singh, R.P. & Kafatos, M. Influence of coal-based thermal power plants on the spatial–temporal variability of tropospheric NO 2 column over India. Environ Monit Assess 184, 1891–1907 (2012). https://doi.org/10.1007/s10661-011-2087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2087-6

Keywords

Navigation