Skip to main content

Advertisement

Log in

Evaluation of microbial contamination and distribution of sulphate-reducing bacteria in dental units

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Although bacterial contamination is widely researched in dental unit water systems, we have been unable to find any published reports to date about the presence and distribution of sulphate-reducing bacteria (SRB) in dental unit waterlines (DUWLs). The aim of this study was to evaluate microbial contamination and to determine the presence and distribution of SRB in DUWLs. One hundred twenty-three water samples were collected from the air–water syringes, high-speed drills and water sources from 41 dental units in Istanbul, Turkey. The counts of aerobic heterotrophic bacteria and SRB were investigated in the water samples. In addition, the presence of free-living amoebae (FLA) was examined. In this work, we evaluated microbial contamination and reported for the first time the distribution of SRB in DUWLs. We determined that only ten out of 123 water samples were able to meet the American Dental Association’s limit (≤200 CFU ml − 1). SRB were observed in 102 out of 123 samples (82.9%). In addition, SRB were detected in all of the air–water syringes and high-speed drills. FLA were established in 103 out of 123 samples (83.7%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd, H., Saeed, A., Weintraub, A., Balakrish Nair, G., & Gunnar Sandstro, M. (2007). Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. FEMS Microbiol, Ecology, 60, 33–39.

    Article  CAS  Google Scholar 

  • Angell, P., & Urbanic, K. (2000). Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corrosion Science, 42, 897–912.

    Article  CAS  Google Scholar 

  • Anonymous. (1996). ADA statement on dental unit waterlines. Journal of the American Dental Association, 127, 185–186.

    Google Scholar 

  • Atlas, R. M., Williams, J. F., & Huntington, M. K. (1995). Legionella contamination of dental-unit waters. Applied and Environmental Microbiology, 61(4), 1208–1213.

    CAS  Google Scholar 

  • Barbeau, J., & Buhler, T. (2001). Biofilms augment the number of free-living amoebae in dental unit waterlines. Research in Microbiology, 152, 753–760.

    Article  CAS  Google Scholar 

  • Blake, G. C. (1963). The incidence and control of bacterial infection in dental spray reservoirs. British Dental Journal, 115, 413–416.

    Google Scholar 

  • Checchi, L., Montebugnoli, L., & Samaritani, S. (1998). Contamination of the turbine air-chamber: A risk of cross infection. Journal of Clinical Periodontology, 25(8), 607–611.

    Article  CAS  Google Scholar 

  • Dogruoz, N., Minnos, B., Ilhan-Sungur, E., & Çotuk, A. (2009). Biofilm formation on copper and galvanized steel surfaces in a cooling-water system. IUFS Journals of Biology, 68(2), 105–111.

    Google Scholar 

  • Göksay, D., Çotuk, A., & Zeybek, Z. (2008). Microbial contamination of dental unit waterlines in Istanbul, Turkey. Environmental Monitoring and Assessment, 147, 265–269.

    Article  Google Scholar 

  • Haffajee, A. D., & Socransky, S. S. (1994). Microbial etiological agents of destructive periodontal diseases. Periodontology, 2000(5), 78–111.

    Article  Google Scholar 

  • Hamilton, W. A. (1985). Sulphate reducing bacteria and anaerobic corrosion. Annual Review of Immunology, 39, 195–217.

    CAS  Google Scholar 

  • Ilhan-Sungur, E., Cansever, N., & Çotuk, A. (2007). Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.). Corrosion Science, 49, 1097–1109.

    Article  CAS  Google Scholar 

  • Ilhan-Sungur, E., & Çotuk, A. (2005). Characterization of sulfate reducing bacteria isolated from cooling towers. Environmental Monitoring and Assessment, 104, 211–219.

    Article  Google Scholar 

  • Ilhan-Sungur, E., & Çotuk, A. (2010). Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system. Corrosion Science, 52, 161–171.

    Article  CAS  Google Scholar 

  • Jeong, H. J., & Yu, H. S. (2005). The role of domestic tap water in Acanthamoeba contamination in contact lens storage cases in Korea. The Korean Journal of Parasitology, 43(2), 47–50.

    Article  Google Scholar 

  • Krishna-Prasad, B. N., & Gupta, S. K. (1978). Preliminary report on engulfment and retention of mycobacteria by trophozoites of axenically grown Acanthamoeba castellanii Douglas. Current Science, 47, 245–247.

    Google Scholar 

  • Langendijk, P. S., Hagemann, J., & van der Hoeven, J. S. (1999). Sulfate reducing bacteria in periodontal pockets and in health oral sites. Journal of Clinical Periodontology, 26, 596–599.

    Article  CAS  Google Scholar 

  • Langendijk, P. S., Hagemann, J., & van der Hoeven, J. S. (2000). Sulfate reducing bacteria in association with human periodontitis. Journal of Clinical Periodontology, 27, 943–950.

    Article  CAS  Google Scholar 

  • Marciano-Cabral, F., & Cabral, G. (2003). Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews, 16(2), 273–307.

    Article  Google Scholar 

  • Martin, M. V. (1987). The significance of the bacterial contamination of dental unit water systems. British Dental Journal, 163, 152–154.

    Article  CAS  Google Scholar 

  • Miller, C. H. (1996). Microbes in dental unit water. Journal of the California Dental Association, 24, 47–52.

    CAS  Google Scholar 

  • Mills, S. E. (2003). Waterborne pathogens and dental waterlines. Dental Clinics of North America, 47, 545–557.

    Article  Google Scholar 

  • Monarca, S., Grottolo, M., Feretti, D., Gigola, P., Zerbini, I., Alberti, A., et al. (2002). Environmental monitoring of infective risks in Italian dental offices. Minerva Stomatologica, 51(7–8), 319–326.

    CAS  Google Scholar 

  • Norton, C. D., & Lechevallier, M. W. (2000). A pilot study of bacteriological population changes through potable water treatment and distribution. Applied and Environmental Microbiology, 66, 268–276.

    Article  CAS  Google Scholar 

  • Pitcher, M. C. L., & Cummings, J. H. (1996). Hydrogen sulphide: A bacterial toxin in ulcerative colitis? Gut, 39, 1–4.

    Article  CAS  Google Scholar 

  • Postgate, J. R. (1984). The sulphate reducing bacteria (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ratcliff, P. A., & Johnson, P. W. (1999). The relationship between oral malodor, gingivitis, and periodontitis. The Journal of Periodontology, 70(5), 485–489.

    Article  CAS  Google Scholar 

  • Reasoner, D. J., & Geldrich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49, 1–7.

    CAS  Google Scholar 

  • Robichaux, M., Howell, M., & Boopathy, R. (2003). Growth and activities of sulfate-reducing and methanogenic bacteria in human oral cavity. Current Microbiology, 47, 12–16.

    Article  CAS  Google Scholar 

  • Rowbotham, T. J. (1980). Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. Journal of Clinical Pathology, 33, 1179–1183.

    Article  CAS  Google Scholar 

  • Smith, A. J., McHugh, S., Aitken, I., & Hood, J. (2002). Evaluation of the efficacy of Alpron disinfectant for dental unit water lines. British Dental Journal, 193, 593–596.

    Article  CAS  Google Scholar 

  • Souza-Gugelmin, M. C. M., Lima, C. D. T., Lima, S. N. M., Mian, H., & Ito, I. Y. (2003). Microbial contamination in dental unit waterlines. Brazilian Dental Journal, 14(1), 55–57.

    Article  Google Scholar 

  • Tee, W., Dyall-Smith, M., Woods, W., & Eisen, D. (1996). Probable new species of Desulfovibrio isolated from a pyogenic liver abscess. Journal of Clinical Microbiology, 34(7), 1760–1764.

    CAS  Google Scholar 

  • Türetgen, I., Göksay, D., & Çotuk, A. (2009). Comparison of the microbial load of incoming and distal outlet waters from dental unit water systems in Istanbul. Environmental Monitoring and Assessment, 158, 9–14.

    Article  Google Scholar 

  • Walker, J. T., Bradshaw, D. J., Bennett, A. M., Fulford, M. R., Martin, M. V., & Marsh, P. D. (2000). Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Applied and Environmental Microbiology, 66, 3363–3367.

    Article  CAS  Google Scholar 

  • Widdel, F. (1988). Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In A. J. B. Zehnder (Ed.), Biology of anaerobic microorganisms (pp. 469–585). New York: Wiley.

    Google Scholar 

  • Williams, H. N., Johnson, A., Kelley, J. I., Baer, M. L., King, T. S., & Mitchell, B. (1995). Bacterial contamination of thewater supply in newly installed dental units. Quintessence International, 26, 331–337.

    CAS  Google Scholar 

  • Williams, J. F., Molinari, J. A., & Andrews, N. (1996). Microbial contamination of dental unit waterlines: Origins and characteristics. The Compendium of Continuing Education in Dentistry, 17(6), 538–540.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Dogruöz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogruöz, N., Ilhan-Sungur, E., Göksay, D. et al. Evaluation of microbial contamination and distribution of sulphate-reducing bacteria in dental units. Environ Monit Assess 184, 133–139 (2012). https://doi.org/10.1007/s10661-011-1952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1952-7

Keywords

Navigation