Skip to main content

Advertisement

Log in

Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Processes that control the mobility, transformation and toxicity of metals in soil are of special importance in the root-developing zone. For this reason, there is a considerable interest in understanding trace elements (TEs) behavior in soil, emphasising the processes by which plants take them up. Increased root-zone salinity can affect plant TEs uptake and accumulation in plant tissue. Furthermore, copper (Cu) complexation by soil organic matter (SOM) is an effective mechanism of Cu retention in soils, controlling thus its bioavailability. Therefore, a greenhouse pot experiment was conducted to study the effects of soil Cu contamination in a saline environment on faba bean (Vicia faba L.) element uptake. Treatment with NaCl salinity was applied (control, 50 mM NaCl and 100 mM NaCl) on faba bean plants grown in a control and in a soil spiked with Cu (250 and 500 mg kg−1). Low and high SOM content trial variants were studied. Cu accumulation occurred in faba bean leaf, pod and seed. Cu contamination affected plant element concentrations in leaves (Na, Ca, Mg, Mn), pod (Zn, Mn) and seed (Mn, Mo, Zn). Root-zone salinity also affected faba bean element concentrations. Furthermore, Cu contamination—salinity and salinity—SOM interactions were significant for pod Cu concentration, suggesting that Cu phytoavailability could be affected by these interactions. Future research will be focused on the mechanisms of Cu translocation in plant and adaptation aspects of abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelhamid, M. T., Shokr, M. M. B., & Bekheta, M. A. (2010). Growth, root characteristics and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Communications in Soil Science and Plant Analysis, 41, 2713–2728.

    Article  CAS  Google Scholar 

  • Akbar Boojar, M. M., & Goodarzi, F. (2007). The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere, 67, 2138–2147.

    Article  Google Scholar 

  • Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M.-L., Epron, D., & Badot, P.-M. (2004). Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science, 166, 1213–1218.

    Article  Google Scholar 

  • Ali, N. A., Pilar Bernal, M., & Ater, M. (2002). Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103–111.

    Article  CAS  Google Scholar 

  • Allen, H. E., & Janssen, C. R. (2006). Incorporating bioavailability into criteria for metals. In I. Twardowska, H. E. Allen, M. M. Häggblom, & S. Stefaniak (Eds.), Nato science series IV: Earth and environmental sciences. soil and water pollution monitoring, protection and remediation (pp. 3–23). Netherlands: Springer.

    Google Scholar 

  • Al-Tahir, O. A., & Al-Abdulsalam, M. A. (1997). Growth of faba bean (Vicia faba L.) as influenced by irrigation water salinity and time of salinization. Agricultural Water Management, 34, 161–167.

    Article  Google Scholar 

  • Arduini, I., Godbold, D. L., & Onnis, A. (1995). Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. Seedlings. Tree Physiology, 15, 411–415.

    Article  CAS  Google Scholar 

  • Aydin, A., Kant, C., & Turan, M. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 7(7), 1073–1086.

    Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—Strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baxter, I., Hermans, C., Lahner, B., Yakubova, E., Tikhonova, M., Verbruggen, N., et al. (2012). Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE, 7(4), e35121.

    Article  CAS  Google Scholar 

  • Boudesocque, S., Guillon, E., Aplincourt, M., Marceau, E., & Stievano, L. (2007). Sorption of Cu(II) onto vineyard soils: Macroscopic and spectroscopic investigations. Journal of Colloid and Interface Science, 307, 40–49.

    Article  CAS  Google Scholar 

  • Bowen, J. E. (1969). Absorption of copper, zinc, and manganese by sugarcane leaf tissue. Plant Physiology, 44, 255–261.

    Article  CAS  Google Scholar 

  • Brennan, R. F., & Bolland, M. D. A. (2003). Comparing copper requirements of faba bean, chickpea, and lentil with spring wheat. Journal of Plant Nutrition, 26(4), 883–899.

    Article  CAS  Google Scholar 

  • Brun, L. A., Maillet, J., Richarte, J., Herrmann, P., & Remy, J. C. (1998). Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environmental Pollution, 102(2–3), 151–161.

    Article  CAS  Google Scholar 

  • Cattani, I., Fragoulis, G., Boccelli, R., & Capri, E. (2006). Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils. Chemosphere, 64, 1972–1979.

    Article  CAS  Google Scholar 

  • Chantigny, M. H. (2003). Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma, 113, 357–380.

    Article  CAS  Google Scholar 

  • Cha-um, S., & Kirdmanee, C. (2011). Remediation of salt-affected soil by the addition of organic matter—An investigation into improving glutinous rice productivity. Scientia Agricola, 68(4), 406–410.

    Article  CAS  Google Scholar 

  • Chiu, C.-Y., Hsiu, F.-S., Chen, S–. S., & Chou, C.-H. (1995). Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Botanical Bulletin of Academia Sinica, 36, 19–24.

    CAS  Google Scholar 

  • Daur, I., Sepetoglu, H., Marwat, K. B., & Geverek, M. N. (2010). Nutrient removal, performance of growth and yield of faba bean (Vicia faba L.). Pakistan Journal of Botany, 42(5), 3477–3484.

    Google Scholar 

  • De Vos, C. H. R., Vonk, M. J., Vooijs, R., & Schat, H. (1991). Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiology, 98, 853–858.

    Article  Google Scholar 

  • Degryse, F., Smolders, E., & Parker, D. R. (2009). Partitioning of metals (Cd Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications—A review. Journal of Soil Science, 60, 590–612.

    Article  CAS  Google Scholar 

  • Dučić, T., & Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology, 17(1), 103–112.

    Article  Google Scholar 

  • Ehlken, S., & Kirchner, G. (2002). Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: A review. Journal of Environmental Radioactivity, 58, 97–112.

    Article  CAS  Google Scholar 

  • Glatzel, S., Kalbitz, K., Dalvac, M., & Moore, T. (2003). Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma, 113, 397–411.

    Article  CAS  Google Scholar 

  • Grattan, S. R., & Grieve, C. M. (1999). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127–157.

    Article  CAS  Google Scholar 

  • Hochmuth, G., Maynard, D., Vavrina, C., & Hanlon, E. (1991). Plant tissue analysis and interpretation for vegetable crops in Florida. Special Publication. SS-VEC-42, Gainesville, University Florida.

  • Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (1999). Soil analysis procedures extraction with 0.01 M CaCl2. The Netherlands: Wageningen Agricultural University.

    Google Scholar 

  • Houba, V. J. G., Uittenbogaard, J., & Pellen, P. (1996). Wageningen evaluating programmes for analytical laboratories (WEPAL) organization and purpose. Communications in Soil Science and Plant Analysis, 27(3–4), 421–431.

    Article  CAS  Google Scholar 

  • HRN ISO 11466:2004. (2004). Soil quality-extraction of trace elements soluble in aqua regia. International standard. Croatia Zagreb: Croatian Standards Institute.

    Google Scholar 

  • HRN ISO 14235:1998. (1998). Soil quality-determination of organic carbon by sulfochromic oxidation. International standard. Croatia Zagreb: Croatian Standards Institute.

    Google Scholar 

  • Institute, S. A. S. (2001). SAS/STAT user’s guide, version 8-1. Cary North Carolina: SAS Institute Inc.

    Google Scholar 

  • Jiang, W., Liu, D., & Liu, X. (2001). Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biologia Plantarum, 44, 105–109.

    Article  CAS  Google Scholar 

  • Kalbitz, K., Schmerwitz, J., Schwesig, D., & Matzner, E. (2003). Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113, 273–291.

    Article  CAS  Google Scholar 

  • Katerji, N., van Hoorn, J. W., Hamdy, A., & Mastrorilli, M. (2000). Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management, 43, 99–109.

    Article  Google Scholar 

  • Katerji, N., Van Hoorn, J. W., Hamdy, A., Mastrorilli, M., & Oweis, T. (2005). Salt tolerance analysis of chickpea, faba bean and durum wheat varieties I. Chickpea and faba bean. Agricultural Water Management, 72, 177–194.

    Article  Google Scholar 

  • Kim, K.-R., Owens, G., Naidu, R., & Kwon, S. (2010). Influence of plant roots on rhizosphere soil solution composition of long-term contaminated soils. Geoderma, 155, 86–92.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., Milne, C. J., Benedetti, M. F., Pinheiro, J. P., Filius, J., Koopal, L. K., et al. (1996). Metal ion binding by humic acid: Application of the NICA-Donnan model. Environmental Science and Technology, 30, 1687–1698.

    Article  CAS  Google Scholar 

  • Liao, M. (2000). Mechanisms of copper uptake and transport in plants. PhD Thesis, Massey University, New Zealand.

  • Maderova, L., Watson, M., & Paton, G. I. (2011). Bioavailability and toxicity of copper in soils: Integrating chemical approaches with response of microbial biosensors. Soil Biology & Biochemistry, 43, 1162–1168.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.

    Google Scholar 

  • Matijevic, L., Romic, D., Maurovic, N., & Romic, M. (2012). Saline irrigation water affects element uptake by bean plant (Vicia faba L.). European Chemical Bulletin, 1(12), 498–502.

    CAS  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (1979). Principles of plant nutrition (2nd ed.). Bern: International Potash Institute.

    Google Scholar 

  • Mohamed, A. E., Rashed, M. N., & Mofty, A. (2003). Assessment of essential and toxic elements in some kinds of vegetables. Ecotoxicology and Environmental Safety, 55, 251–260.

    Article  CAS  Google Scholar 

  • Muhammad, S., Müller, T., & Joergensen, R. G. (2008). Relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab. Journal of Arid Environments, 72, 448–457.

    Article  Google Scholar 

  • Neff, J. C., & Asner, G. P. (2001). Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems, 4, 29–48.

    Article  CAS  Google Scholar 

  • Ondrasek, G., & Rengel, Z. (2012). The role of soil organic matter in trace element bioavailability and toxicity. In P. Ahmad & M. N. V. Prasad (Eds.), Abiotic stress responses in plants: Metabolism, productivity and sustainability. New York: Springer.

    Google Scholar 

  • Ondrasek, G., Romic, D., Rengel, Z., Romic, M., & Zovko, M. (2009). Cadmium accumulation by muskmelon under salt stress in contaminated organic soil. Science of the Total Environment, 407, 2175–2182.

    Article  Google Scholar 

  • Pedersen, M. B., Kjær, C., & Elmegaard, N. (2000). Toxicity and bioaccumulation of copper to Black bindweed (Fallopia convolvulus) in relation to bioavailability and the age of soil contamination. Archives of Environmental Contamination and Toxicology, 39, 431–439.

    Article  CAS  Google Scholar 

  • Pilon, M., Cohu, C. M., Ravet, K., Abdel-Ghany, S. E., & Gaymard, F. (2009). Essential transition metal homeostasis in plants. Current Opinion in Plant Biology, 12, 347–357.

    Article  CAS  Google Scholar 

  • Pitman M. G., & Laüchli A. (2002). Global impact of salinity and agricultural ecosystems. In A. Laüchli & U. Lüttge (Eds.), Salinity: Environment–Plants–Molecules (pp. 3–20). Dordrecht: Kluwer Academic Publishers.

  • Probst, A., Liu, H., Fanjul, M., Liao, B., & Hollande, E. (2009). Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and root. Environmental and Experimental Botany, 66, 297–308.

    Article  CAS  Google Scholar 

  • Rashed, M. N., & Awadallah, R. M. (1998). Trace elements in faba bean (Vicia faba L.) plant and soil as determined by atomic absorption spectroscopy and ion selective electrode. Journal of the Science of Food and Agriculture, 77, 18–24.

    Article  CAS  Google Scholar 

  • Reichman, S. M. (2002). The responses of plants to metal toxicity: A review focusing on copper, manganese and zinc. Melbourne: The Australian Minerals & Energy Environment Foundation.

    Google Scholar 

  • Romic, M. (2012). Bioavailability of trace metals in terrestrial environment: Methodological issues. European Chemical Bulletin, 1(11), 489–493.

    CAS  Google Scholar 

  • Romic, D., Ondrasek, G., Romic, M., Borosic, J., Vranjes, M., & Petosic, D. (2008). Salinity and irrigation method affect crop yield and soil quality in watermelon (Citrullus lanatus L.) growing. Irrigation and Drainage, 57, 463–469.

    Article  Google Scholar 

  • Romic, M., Romic, D., & Ondrasek, G. (2004). Heavy metals accumulation in topsoils from the wine-growing regions. Part 2. Relationships between soil properties and extractable copper contents. Agriculturae Conspectus Scientificus, 69(2–3), 35–41.

    Google Scholar 

  • Romic, D., Romic, M., Zovko, M., Bakic, H., & Ondrasek, G. (2012). Trace metals in the coastal soils developed from estuarine floodplain sediments in the Croatian Mediterranean region. Environmental Geochemistry and Health, 34(4), 399–416.

    Article  CAS  Google Scholar 

  • Römkens, P. F. A. M., Bouwman, L. A., & Boon, G. T. (1999). Effect of plant growth on copper solubility and speciation in soil solution samples. Environmental Pollution, 106, 315–321.

    Article  Google Scholar 

  • Sauvé, S., McBride, M. B., Norvell, W. A., & Hendershot, W. H. (1997). Copper solubility and speciation of in situ contaminated soils: Effects of copper level, pH and organic matter. Water, Air, and Soil pollution, 100, 133–149.

    Article  Google Scholar 

  • Shahid, M., Dumat, C., Silvestre, J., & Pinelli, E. (2012). Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biology and Fertility of Soils, 48, 689–697.

    Article  CAS  Google Scholar 

  • Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., & Dumat, C. (2011). Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and Environmental Safety, 74, 78–84.

    Article  CAS  Google Scholar 

  • Srinivasarao, C., Benzioni, A., Eshel, A., & Waisel, Y. (2004). Effects of salinity on root morphology and nutrient acquisition by faba beans (Vicia faba L.). Journal of the Indian Society of Soil Science, 52(2), 184–191.

    Google Scholar 

  • Tang, S., Wilke, B.-M., & Huang, C. (1999). The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant and Soil, 209, 225–232.

    Article  CAS  Google Scholar 

  • Tao, S., Liu, W. X., Chen, Y. J., Xu, F. L., Dawson, R. W., Li, B. G., et al. (2004). Evaluation of factors influencing root-induced changes of copper fractionation in rhizosphere of a calcareous soil. Environmental Pollution, 129, 5–12.

    Article  CAS  Google Scholar 

  • Tejera, N. A., Soussi, M., & Lluch, C. (2006). Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany, 58, 17–24.

    Article  CAS  Google Scholar 

  • Tessier, A., Fortin, D., Belize, N., DeVitre, R. R., & Leppard, G. G. (1996). Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: Narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta, 60, 387–404.

    Article  CAS  Google Scholar 

  • Ullah, S. M., Soja, G., & Gertzabek, M. H. (1993). Ion uptake, osmoregulation and plant water relations in faba bean (Vicia faba L.) under salt stress. Bodenkultur, 44, 291–301.

    CAS  Google Scholar 

  • Wang, W.-S., Shan, X.-Q., Wen, B., & Zhang, S.-Z. (2003). Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere, 53, 523–530.

    Article  CAS  Google Scholar 

  • Xiong, Z.-T., Li, Y.-H., & Xu, B. (2002). Nutrition influence on copper accumulation by Brassica pekinensis Rupr. Ecotoxicology and Environmental Safety, 53, 200–205.

    Article  CAS  Google Scholar 

  • Xue, P., Li, G., Liu, W., & Yan, C. (2010). Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere, 81, 1098–1103.

    Article  CAS  Google Scholar 

  • Yobouet, Y. A., Adouby, K., Trokourey, A., & Yao, B. (2010). Cadmium, copper, lead and zinc speciation in contaminated soils. International Journal of Engineering Science and Technology, 2(5), 802–812.

    Google Scholar 

  • You, S.-J., Yin, Y., & Allen, H. E. (1999). Partitioning of organic matter in soils: Effects of pH and water/soil ratio. The Science of the Total Environment, 227, 155–160.

    Article  CAS  Google Scholar 

  • Zovko, M., & Romic, M. (2011). Soil contamination by trace metals: Geoechemical behavior as an element of risk assessment. In I. A. Dar (Ed.), Earth and environmental sciences (pp. 437–456). Rijeka: InTech.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science, Education and Sport of the Republic of Croatia, contract 178-1782221-0350, project “Soil salinization: identifying, processes and effects on crops”, and contract 178-1782221-2039, project “Spatial variability of potentially toxic metals in agricultural soils of Croatia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lana Matijevic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matijevic, L., Romic, D. & Romic, M. Soil organic matter and salinity affect copper bioavailability in root zone and uptake by Vicia faba L. plants. Environ Geochem Health 36, 883–896 (2014). https://doi.org/10.1007/s10653-014-9606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9606-7

Keywords

Navigation