Skip to main content

Advertisement

Log in

The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Poly [ADP-ribose] polymerase-1 (PARP-1) localizes rapidly to sites of DNA damage and has been associated with various repair mechanisms including base excision repair (BER) and homologous recombination/non-homologous end joining (HRR/NHEJ). PARP-1 acts by adding poly-ADP ribose side chains to target proteins (PARylation) altering molecular interactions and functions. Recently small molecule inhibitors of PARP-1 have been shown to have significant clinical potential and third generation PARP inhibitors are currently being investigated in clinical trials. These drugs alone or in combination with radio/chemotherapy have resulted in meaningful patient responses and an increase in survival in metastatic breast cancer cases bearing BRCA-deficient or triple negative tumors and BRCA-deficient ovarian cancer patients. ABT-888, a potent PARP-1 inhibitor, sensitizes many cancer cells in-vitro and in-vivo to temozolomide. As such, we hypothesized that colon cancers would be sensitized to the DNA damaging chemotherapeutic agents, oxaliplatin and irinotecan, by ABT-888. Using colon cancer cell lines significant synergy was observed between ABT-888 and irinotecan at concentrations of ABT-888 as low as 0.125 μM. The level of synergy observed correlated with the degree of PARP1 inhibition as measured biochemically in cell lysates. ABT-888 at concentrations of 0.5–4 μM resulted in synergy with oxaliplatin. Furthermore, 24 h post treatment combinations of ABT-888/irinotecan generally resulted in increased G2/M cell cycle arrest and increased levels of DNA damage, followed by increased levels of apoptosis 48 h post treatment. In conclusion this study suggests that ABT-888 may be a clinically effective adjuvant to current colon cancer therapies that include the use of irinotecan and/or oxaliplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Raftery L, Goldberg RM (2010) Optimal delivery of cytotoxic chemotherapy for colon cancer. Cancer J 16:214–219

    Article  PubMed  CAS  Google Scholar 

  2. Edwards SL (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–1115

    Article  PubMed  CAS  Google Scholar 

  3. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  PubMed  CAS  Google Scholar 

  4. Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33:9–23

    Article  PubMed  CAS  Google Scholar 

  5. Spanswick VJ, Craddock C, Sekhar M, Mahendra P, Shankaranarayana P, Hughes RG (2002) Repair of DNA interstrand crosslinks as a mechanism of clinical resistance to melphalan in multiple myeloma. Blood 100:224–229

    Article  PubMed  CAS  Google Scholar 

  6. Amrein L, Loignon M, Goulet A-C, Dunn M, Jean-Claude B, Aloyz R et al (2007) Chlorambucil cytotoxicity in malignant B lymphocytes is synergistically increased by 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026)-mediated inhibition of DNA double-strand break repair via inhibition of DNA-dependent protein kinase. J Pharmacol Exp Ther 321:848–855

    Article  PubMed  CAS  Google Scholar 

  7. Davidson D, Coulombe Y, Martinez-Marignac V, Amrein L, Grenier J, Hodkinson K et al (2012) Irinotecan and DNA-PKcs inhibitors synergize in killing of colon cancer cells. Invest New Drugs 30:1248–1256

    Article  PubMed  CAS  Google Scholar 

  8. Davidson D, Grenier J, Martinez-Marignac V, Amrein L, Shawi M, Tokars M et al (2012) Effects of the novel DNA dependent protein kinase inhibitor, IC486241, on the DNA damage response to doxorubicin and cisplatin in breast cancer cells. Invest New Drugs 30:1736–1742

    Article  PubMed  CAS  Google Scholar 

  9. Nutley BP, Smith NF, Hayes A, Kelland LR, Brunton L, Golding BT et al (2005) Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. Br J Cancer 93:1011–1018

    PubMed  CAS  Google Scholar 

  10. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ et al (2007) ABT-888, an Orally Active Poly(ADP-Ribose) Polymerase Inhibitor that Potentiates DNA-Damaging Agents in Preclinical Tumor Models. Clin Cancer Res 13:2728–2737

    Article  PubMed  CAS  Google Scholar 

  11. Horton TM, Jenkins G, Pati D, Zhang L, Dolan ME, Ribes-Zamora A et al (2009) Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O6-methylguanine-DNA methyltransferase activity. Mol Cancer Ther 8:2232–2242

    Article  PubMed  CAS  Google Scholar 

  12. Ji J, Lee M, Kadota M, Zhang Y, Parchment R, Tomaszewski JE et al (2011) Pharmacodynamic and pathway analysis of three presumed inhibitors of poly (ADP-ribose) polymerase: ABT-888, AZD2281, and BSI201. Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 April 2–6; Orlando, FL. Philidelphia, PA: American Association of Cancer Research

  13. Kummar S, Kinders R, Gutierrez ME, Rubinstein L, Parchment RE, Phillips LR et al (2009) Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 27:2705–2711

    Article  PubMed  CAS  Google Scholar 

  14. Curtin NJ (2005) PARP inhibitors for cancer therapy. Expert Rev Mol Med 7:1–20

    Article  PubMed  Google Scholar 

  15. Heacock ML, Stefanick DF, Horton JK, Wilson SH (2010) Alkylation DNA damage in combination with PARP inhibition results in formation of S-phase-dependent double-strand breaks. DNA Repair 9:929–936

    Article  PubMed  CAS  Google Scholar 

  16. Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings. Molecular Oncology; 5:387–393.

  17. Javle M, Curtin NJ (2011) The role of PARP in DNA repair and its therapeutic exploitation. Br J Cancer 105:1114–1122

    Article  PubMed  CAS  Google Scholar 

  18. Kummar S, Chen A, Parchment R, Kinders R, Ji J, Tomaszewski J et al (2012) Advances in using PARP inhibitors to treat cancer. BMC Med 10:25

    Article  PubMed  CAS  Google Scholar 

  19. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301

    Article  PubMed  CAS  Google Scholar 

  20. Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JAP, Larsen AK et al (2012) PARPs and the DNA damage response. Carcinogenesis

  21. Tentori L, Graziani G (2005) Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 52:25–33

    Article  PubMed  CAS  Google Scholar 

  22. Zaremba T, Thomas HD, Cole M, Coulthard SA, Plummer ER, Curtin NJ (2011) Poly(ADP-ribose) polymerase-1 (PARP-1) pharmacogenetics, activity and expression analysis in cancer patients and healthy volunteers. Biochem J 436:671–679

    Article  PubMed  CAS  Google Scholar 

  23. Bedikian AY, Papadopoulos NE, Kim KB, Hwu WJ, Homsi J, Glass MR et al (2009) A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest 27:756–763

    Article  PubMed  CAS  Google Scholar 

  24. Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A et al (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14:7917–7923

    Article  PubMed  CAS  Google Scholar 

  25. Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  PubMed  CAS  Google Scholar 

  26. Berenbaum M (1992) Letter Correspondence re: “Greco et al., Applications of a New Approach for the Quantitation of Drug Synergism to the Combination of c/s-Diamminedichloroplatinum and 1-tf-D-Arabinofuranosylcytosine. Cancer Res 50: 5318–5327, 1990.”. Cancer Res 52:4558–4565

    PubMed  CAS  Google Scholar 

  27. Xu Z-Y, Loignon M, Han F-Y, Panasci L, Aloyz R (2005) Xrcc3 Induces cisplatin resistance by stimulation of Rad51-related recombinational repair, S-phase checkpoint activation, and reduced apoptosis. J Pharmacol Exp Ther 314:495–505

    Article  PubMed  CAS  Google Scholar 

  28. Tentori L, Leonetti C, Scarsella M, Muzi A, Mazzon E, Vergati M et al (2006) Inhibition of poly(ADP-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB J 20:1709–1711

    Article  PubMed  CAS  Google Scholar 

  29. Smith J, Mun Tho L, Xu N, A. Gillespie D. The ATM-Chk2 and ATR-Chk1 Pathways in DNA Damage Signaling and Cancer. In: George FVW, George K, editors. Advances in Cancer Research: Academic Press; 2010. p. 73–112.

  30. Shaheen M, Allen C, Nickoloff JA, Hromas R (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117:6074–6082

    Article  PubMed  CAS  Google Scholar 

  31. Patel AG, Flatten KS, Schneider PA, Dai NT, McDonald JS, Poirier GG et al (2012) Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J Biol Chem 287:4198–4210

    Article  PubMed  CAS  Google Scholar 

  32. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  PubMed  CAS  Google Scholar 

  33. Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105:17079–17084

    Article  PubMed  CAS  Google Scholar 

  34. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C et al (2009) Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 28:2512–2519

    Article  Google Scholar 

  35. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  PubMed  CAS  Google Scholar 

  36. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  37. Drew Y, Mulligan EA, Vong WT, Thomas HD, Kahn S, Kyle S et al (2010) Therapeutic potential of Poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst 103:334–346

    Article  PubMed  Google Scholar 

  38. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  39. Drew Y, Mulligan EA, Vong W-T, Thomas HD, Kahn S, Kyle S et al (2011) Therapeutic Potential of Poly(ADP-ribose) Polymerase Inhibitor AG014699 in Human Cancers With Mutated or Methylated BRCA1 or BRCA2. J Natl Cancer Inst 103:334–346

    Article  PubMed  CAS  Google Scholar 

  40. Rudolf E, Rudolf K, Cervinka M (2011) Camptothecin induces p53-dependent and -independent apoptogenic signaling in melanoma cells. Apoptosis 16:1–12

    Article  Google Scholar 

  41. Zuco V, Benedetti V, Zunino F (2010) ATM- and ATR-mediated response to DNA damage induced by a novel camptothecin, ST1968. Cancer Lett 292:186–196

    Article  PubMed  CAS  Google Scholar 

  42. Schwartz GK (2005) Development of cell cycle active drugs for the treatment of gastrointestinal cancers: a new approach to cancer therapy. J Clin Oncol 23:4499–4508

    Article  PubMed  CAS  Google Scholar 

  43. Poele RH, Joel SP (1999) Schedule-dependent cytotoxicity of SN-38 in p53 wild-type and mutant colon adenocarcinoma cell lines. Br J Cancer 81:1285–93

    Article  CAS  Google Scholar 

  44. Elmageed A, Zakaria Y, Amarjit NS, Errami Y, Zerfaoui M (2012) The Poly(ADP-ribose) polymerases (PARPs): New roles in intracellular transport. Cell Signal 24:1–8

    Article  Google Scholar 

  45. Williamson CT, Kubota E, Hamill JD, Klimowicz A, Ye R, Muzik H et al (2012) Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53. EMBO Mol Med 4:515–527

    Article  PubMed  CAS  Google Scholar 

  46. Kedar PS, Stefanick DF, Horton JK, Wilson SH (2008) Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair 7:1787–1798

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen D, Zajac-Kaye M, Rubinstein L, Voeller D, Tomaszewski JE, Kummar S et al (2011) Poly(ADP-ribose) polymerase inhibition enhances p53-dependent and -independent DNA damage responses induced by DNA damaging agent. Cell Cycle 10:4074–4082

    Article  PubMed  CAS  Google Scholar 

  48. LoRusso JJ, Heilbrun LK, Shapiro G, Sausville EA, Boerner SA, Smith DW et al (2011) Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888; V) in combination with irinotecan (CPT-11; Ir) in patients (pts) with advanced solid tumors. Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 April 2–6; Orlando, FL. Philidelphia, PA: American Association of Cancer Research

Download references

Acknowledgements

We gratefully acknowledge Abbott laboratories for providing the PARP inhibitor ABT-888 used in this study.

Grant support

This work was supported by research grants to Lawrence Panasci and Raquel Aloyz from the Canadian Institute of Health Research (CIHR) and CIHR and the Leukemia, Lymphoma Society (USA), respectively. David Davidson received salary support from the Quebec-Clinical Research Organization in Cancer (Q-CROC).

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raquel Aloyz or Lawrence Panasci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, D., Wang, Y., Aloyz, R. et al. The PARP inhibitor ABT-888 synergizes irinotecan treatment of colon cancer cell lines. Invest New Drugs 31, 461–468 (2013). https://doi.org/10.1007/s10637-012-9886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9886-7

Keywords

Navigation