Skip to main content

Advertisement

Log in

Landscape-level analysis of mountain goat population connectivity in Washington and southern British Columbia

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation and habitat loss diminish population connectivity, reducing genetic diversity and increasing extinction risk over time. Improving connectivity is widely recommended to preserve the long-term viability of populations, but this requires accurate knowledge of how landscapes influence connectivity. Detectability of landscape effects on gene flow is highly dependent on landscape context, and drawing conclusions from single landscape studies may lead to ineffective management strategies. We present a novel approach to elucidate regional variation in the relative importance of landscape variable effects on gene flow. We demonstrate this approach by evaluating gene flow between isolated, genetically impoverished mountain goat (Oreamnos americanus) populations in Washington and much larger, genetically robust populations in southern British Columbia. We used geneland to identify steep genetic gradients and then employed individual-based landscape genetics in a causal modeling framework to independently evaluate landscape variables that may be generating each of these genetic gradients. Our results support previous findings that freeways, highways, water, agriculture and urban landcover limit gene flow in this species. Additionally, we found that a previously unsupported landscape variable, distance to escape terrain, also limits gene flow in some contexts. By integrating geneland and individual-based methods we effectively identified regional limiting factors that have landscape-level implications for population viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amos J, Bennet AF, Mac Nally R, Newell G, Radford JQ, Pavlova A, Thompson J, White M, Sunnucks P (2012) Predicting landscape genetic consequences of habitat loss, fragmentation and mobility for species of woodland birds. PLoS One 7:1–12

    Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830

    Article  Google Scholar 

  • Balkenhol N, Pardini R, Cornelius C, Fernandes F, Sommer S (2013) Landscape-level comparison of genetic diversity and differentiation in a small mammal inhabiting different fragmented landscapes of the Brazilian Atlantic Forest. Conserv Genet 14:355–367

    Article  Google Scholar 

  • Beier P, Spencer W, Baldwin RF, McRae BH (2011) Toward best practices for developing regional connectivity maps. Conserv Biol 25:879–892

    Article  PubMed  Google Scholar 

  • Blair C, Weigel DE, Balazik M, Keeley ATH, Walker FM, Landguth E, Cushman S, Murhpy M, Waits L, Balkenhol N (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833

    Article  PubMed  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856

    Article  PubMed  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Crooks KR, Sanjayan MA (2006) Connectivity conservation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Raphael MG, Ruggiero LF, Shirk AJ, Wasserman TN, O’Doherty EC (2011) Limiting factors and landscape connectivity: the American marten in the Rocky Mountains. Landsc Ecol 26:1137–1149

    Article  Google Scholar 

  • Cushman SA, Landguth EL, Shirk AJ (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27:369–380

    Article  Google Scholar 

  • Cushman SA, Shirk AJ, Landguth EL (2013a) Landscape genetics and limiting factors. Conserv Genet 14:263–274

    Article  Google Scholar 

  • Cushman SA, Wasserman TN, Landguth EL, Shirk AJ (2013b) Re-evaluating causal modeling ith Mantel tests in landscape genetics. Diversity 5:51–72

    Article  Google Scholar 

  • Dunn SJ, Clancey E, Waits LP, Byers J (2011) Inbreeding depression in pronghorn (Antilocapra americana) fawns. Mol Ecol 20:4889–4898

    Article  PubMed  Google Scholar 

  • Etherington TR (2011) Python based GIS tools for landscape genetics: visualizing genetic relatedness and measuring landscape connectivity. Methods Ecol Evol 2:52–55

    Article  Google Scholar 

  • Festa-Bianchet M, Côté S (2008) Mountain goats: ecology, behavior, and conservation of an alpine ungulate. Island Press, Washington DC

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Galbreath K, Hafner D, Zamudio K (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evolution 63:2848–2863

    Article  CAS  PubMed  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Graves TA, Beier P, Royle JA (2013) Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 22:3888–3903

    Article  PubMed  Google Scholar 

  • Guillot G, Rousset F (2011) On the use of the simple and partial Mantel tests in presence of spatial autocorrelation. Mol Ecol. doi:10.1111/mec.12172.arXiv:1112.0651v1

    Google Scholar 

  • Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:336–344

    Article  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Holderegger R, Wagner H (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Houston DB, Schreiner EG, Moorhead BB (1994) Mountain goats in Olympic National Park: biology and management of an introduced species. USDI National Park Service Scientific Monograph, Denver

    Google Scholar 

  • Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705

    Article  PubMed  Google Scholar 

  • Keller L, Waller D (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Krosby M, Tewksbury J, Haddad NM, Hoekstra J (2010) Ecological connectivity for a changing climate. Conserv Biol 24:1686–1689

    Article  PubMed  Google Scholar 

  • Lande R (1995) Mutation and conservation. Conserv Biol 9:782–791

    Article  Google Scholar 

  • Lande R (1998) Risk of population extinction from fixation of deleterious and reverse mutations. Genetica 103:21–27

    Article  Google Scholar 

  • Legendre P, Fortin M (2010) Comparison of the Mantel test and alternative approaches or detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518

    Article  Google Scholar 

  • Mainguy J, Côté SD, Coltman DW (2009) Multilocus heterozygosity, parental relatedness and individual fitness components in a wild mountain goat Oreamnos americanus population. Mol Ecol 18:2297–2306

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    Article  PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McRae BH, Shah VB (2009) Circuitscape user guide. The University of California, Santa Barbara. http://www.circuitscape.org. Accessed 12 Sep 2011

  • Meirmans PG (2012) The trouble with isolation by distance. Molecular Ecol 21:2839–2846

    Article  Google Scholar 

  • Ortega J, Yannic G, Shafer ABA, Mainguy J, Festa-Bianchet M, Coltman DW, Côté SD (2011) Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 20:1601–1611

    Article  Google Scholar 

  • Parks LC (2013) Mountain goat genetic diversity and population connectivity in Washington and southern British Columbia. Thesis, Western Washington University

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:2074–2093

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Poole KG, Reynolds DM (2010) Mt. Meager mountain goat aerial survey and DNA census, 2009. British Columbia Conservation Foundation. http://www.env.gov.bc.ca/wildlife/wsi/reports/4668_WSI_4668_RPT_2009.PDF. Accessed 14 Apr 2012

  • Pritchard JK, Stehpens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raufaste N, Rousset F (2001) Are partial Mantel tests inadequate? Evolution 55:1703–1705

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice C, Gay D (2010) Effects of mountain goat harvest on historic and contemporary populations. Northwestern Nat 91:40–57

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Rousset F (2008) genepop ‘007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rutledge LY, Holloway JJ, Patterson BR, White BN (2009) An improved field method to obtain DNA for individual identification from wolf scat. J Wildl Manag 8:1430–1435

    Article  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin M, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Sexton JP, Strauss SY, Rice KJ (2011) Gene flow increases fitness at the warm edge of a species’ range. Proc Natl Acad Sci USA 108:11704–11709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shafer ABA, Côté SD, Coltman DW (2011) Hot spots of genetic diversity descended from multiple Pleistocene refugia in an alpine ungulate. Evolution 65:125–138

    Article  PubMed  Google Scholar 

  • Shafer ABA, Northrup JM, White KS, Boyce MS, Côté SD, Coltman DW (2012) Habitat selection predicts genetic relatedness in an alpine ungulate. Ecology 93:1317–1329

    Article  PubMed  Google Scholar 

  • Shirk AJ (2009) Mountain goat genetic structure, molecular diversity, and gene flow in the Cascade Range, Washington. Thesis, Western Washington University

  • Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934

    Article  CAS  PubMed  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    Article  CAS  PubMed  Google Scholar 

  • Shirk AJ, Cushman SA, Landguth EL (2012) Simulating pattern-process relationships to validate landscape genetic models. Int J Ecol 2012:1–8

    Article  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R, Chilton T, Kendall KC, Landguth EL, Schwartz MK, McKelvey KS, Allendorf FW, Luikart G (2011) Why replication is important in landscape genetics: american black bear in the Rocky Mountains. Mol Ecol 20:1092–1107

    Article  Google Scholar 

  • Smith CA (1994) Bi-level analysis of habitat selection by mountain goats in coastal Alaska. Proceedings of the biennial symposium of the northern wild sheep and goat council, vol, pp 5366–379

  • Smouse PE, Long JC, Sokal RR (1986) Multiple-regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • US Geological Survey, GAP Analysis Program (GAP) (2012) Protected Areas Database of the United States (PADUS), version 1.3

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Warren MJ, Wallin DO, Beausoleil RA, Warheit KI (2015) Genetic structure and landscape resistance to gene flow in cougars in Washington and southern British Columbia. Manuscript submitted for publication

  • Washington Wildlife Habitat Connectivity Working Group (WHCWG) (2010) Washington connected landscapes project: statewide analysis. Washington Departments of Fish and Wildlife, and Transportation, Olympia. http://waconnected.org/statewide-analysis/. Accessed 15 Oct 2011

  • Wells A, Wallin DO, Rice CG, Wan-Ying C (2011) GPS bias correction and habitat selection by mountain goats. Remote Sens 3:435–459

  • Wiegand T, Revilla E, Moloney KA (2005) Effects of habitat loss and fragmentation on population dynamics. Conserv Biol 19:108–121

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Ann Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrew Shirk (University of Washington), Cliff Rice (WDFW), Brian Harris, Darryl Reynolds and Christ Proctor (BC Ministry of Forests, Lands and Natural Resource Operations), Cliff Nietvelt (BC Ministry of the Environment), Katy Chambers (BC Parks and Protected Areas), Aaron Shafer (Uppsala University), Kim Poole (Aurora Wildlife Research) and David Paetkau (Wildlife Genetics International) for their collaboration. We thank Samuel Wasser and Rebecca Nelson Booth (University of Washington) for assistance developing sample collection protocol and Ken Warheit, Scott Blankenship and Cheryl Dean (WDFW) for genotyping. Funding was provided by the WDFW Aquatic Lands Enhancement Account, Seattle City Light, the Mountaineers Foundation, the Mazamas, the Safari Club International Foundation, the Washington Chapter of the Wildlife Society, Western Washington University Office of Research and Sponsored Programs and Huxley College of the Environment.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Wallin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parks, L.C., Wallin, D.O., Cushman, S.A. et al. Landscape-level analysis of mountain goat population connectivity in Washington and southern British Columbia. Conserv Genet 16, 1195–1207 (2015). https://doi.org/10.1007/s10592-015-0732-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0732-2

Keywords

Navigation