Skip to main content
Log in

Searching for ways to create energetic materials based on polynitrogen compounds (review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Polynitrogen compounds (containing only nitrogen atoms) are promising candidates as energetic materials for rocket engineering. The high energy content of these compounds is due to the significant difference in bond energy between nitrogen atoms. In particular, molecular nitrogen (N2) is characterized by a uniquely strong triple bond — 229 kcal/mole, whereas the single-bond energy is only 38.4 kcal/mole. From theoretical estimates, use of polynitrogen compounds can provide a specific impulse of 350–500 sec with material density in a range of 2.0–3.9 g/cm3. This paper gives a brief review of the current status of experimental and theoretical studies in the chemistry of polynitrogen compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High Energy Density Materials, Springer, Berlin-Heidelberg (2007) (Structure and Bonding Ser., Vol. 125).

  2. M. B. Talawar, R. Sivabalan, S. N. Aasthana, and H. Singh, “Novel ultrahigh energy materials,” Combust., Expl., Shock Waves, 41, No. 3, 264–277 (2005).

    Article  Google Scholar 

  3. P. C. Samartzis and A. M. Wodtke, “All-nitrogen chemistry: how far are we from N60?,” Int. Rev. in Phys. Chem., 25, No. 4, 527–552 (2006).

    Article  Google Scholar 

  4. D. B. Lempert, G. N. Nechiporenko, and S. I. Soglasnova, “Energetic potential of compositions based on high-enthalpy polynitrogen compounds,” Combust., Expl., Shock Waves, 45, No. 2, 160–168 (2009).

    Article  Google Scholar 

  5. Discovery of New Polynitrogen May Open Door to a New Class of Chemical Propellants, Dec 01-AFRL Horizons, http://www.hobbyspace.com/Links/LaunchPropulsion.html#Propellants.

  6. B.M. Rice, E. F. C. Byrd, and W. D. Mattson, “Computational aspects of nitrogen-rich HEDMs,” High Energy Density Materials, Springer, Berlin-Heidelberg (2007), pp. 153–194 (Structure and Bonding Ser., Vol. 125).

    Chapter  Google Scholar 

  7. D. Rutherford, De aero fixo ant mephitic (On air said to be fixed or mephitic): MD thesis, University of Edinburgh, 1772.

  8. T. Curtius, “The azide ion,” Berichte Dtsch. Chem. Ges., 23, 3023 (1890).

    Article  Google Scholar 

  9. T. A. Scott, “Solid and liquid nitrogen,” Phys. Rep., 27, No. 3, 89–157 (1976).

    Article  ADS  Google Scholar 

  10. B. A. Thrush, “The detection of free radicals in the high intensity photolysis of hydrogen azide,” Proc. Roy. Soc. London, Ser. A: Math. Phys. Sci., 235, 143–147 (1956).

    Article  ADS  Google Scholar 

  11. J. M. L. Martin, J. P. Francois, and R. Gijbels, “Ab initio study of boron, nitrogen, and boron-nitrogen clusters. I. Isomers and thermochemistry of B3, B2N, BN2, and N3,” J. Chem. Phys., 90, No. 11, 6469–6485 (1989).

    Article  ADS  Google Scholar 

  12. J. Wasilewski, “Stationary points on the lowest doublet and quartet hypersurfaces of the N3 radical: A comparison of molecular orbital and density functional approaches,” J. Chem. Phys., 105, No. 24, 10969–10982 (1996).

    Article  ADS  Google Scholar 

  13. M. J. Pellerite, R. L. Jackson, and J. I. Brauman, “Proton affinity of the gaseous azide ion. The N H bond dissociation energy in HN3,” J. Phys. Chem., 85, 1624–1626 (1981).

    Article  Google Scholar 

  14. J. M. L. Martin, J. P. Francois, and R. Gijbels, “The dissociation energy of N3,” J. Chem. Phys., 93, No. 6, 4485–4486 (1990).

    Article  ADS  Google Scholar 

  15. P. Zhang, K. Morokuma, and A. M. Wodtke, “High-level ab initio studies of unimolecular dissociation of the ground-state N3 radical,” J. Chem. Phys., 122, 014106 (2005).

    Article  ADS  Google Scholar 

  16. Y. G. Byun, S. Saebo, C. U. Pittman, and J. Amer, “An ab initio study of potentially aromatic and antiaromatic three-membered rings,” Chem. Soc., 113, 3689–3696 (1991).

    Article  Google Scholar 

  17. R. Tarroni and P. Tosi, “Cyclic and bent electronic states of the N +3 ion,” Chem. Phys. Lett., 389, 274–278 (2004).

    Article  ADS  Google Scholar 

  18. Z. L. Cai, Y. F. Wang, and H. M. Xiao, “Ab initio study of low-lying electronic states of the N +3 ion,” Chem. Phys., 164, 377–381 (1992).

    Article  ADS  Google Scholar 

  19. F. Carnovale, J. B. Peel, and R. G. Rothwell, “Photoelectron spectroscopy of the nitrogen dimer (N2)2 and clusters (N2)n:N2 dimer revealed as the chromophore in photoionization of condensed nitrogen,” J. Chem. Phys., 88, No. 2, 642–650 (1988).

    Article  ADS  Google Scholar 

  20. V. Aquilanti, M. Bartolomei, D. Cappelletti, E. Carmona-Novillo, and F. Pirani, “Dimers of the major components of the atmosphere: Realistic potential energy surfaces and quantum mechanical prediction of spectral features,” Phys. Chem. Chem. Phys., 3, 3891–3894 (2001).

    Article  Google Scholar 

  21. F. M. Bickelhaupt, R. Hoffmann, and R. Levine, “Forbidden four-center reactions: Molecular orbital considerations for N2 + N2 and N2 + N2+,” J. Phys. Chem. A, 101, 8255–8263 (1997).

    Article  Google Scholar 

  22. C. Leonard, P. Rosmus, S. Carter, and N. C. Handy, “Potential energy function and vibrational states of the electronic ground state of N +4 ,” J. Phys. Chem. A, 103, 1846–1852 (1999).

    Article  Google Scholar 

  23. L. G. McKnight, K. B. McAfee, and D. P. Sipler, “Lowfield drift velocities and reactions of nitrogen ions in nitrogen,” Phys. Rev., 164, 62–70 (1967).

    Article  ADS  Google Scholar 

  24. M. M. Francl and J. P. Chesick, “The N4 molecule and its metastability,” J. Phys. Chem., 94, 526–528 (1990).

    Article  Google Scholar 

  25. M. Bittererova, T. Brinck, and H. Ostmark, “Theoretical study of the triplet N4 potential energy surface,” J. Phys. Chem. A, 104, No. 51, 11999–12005 (2000).

    Article  Google Scholar 

  26. S. Evangelisti, “Properties, dynamics, and electronic structure of atoms and molecules,” Int. J. Quantum Chem., 96, No. 6, 598–606 (2004).

    Article  Google Scholar 

  27. P. Pyykko and N. Runeberg, “Ab initio studies of bonding trends: Part 9. The dicyanamide-carbon suboxide-dicyanoethercyanogen azide isoelectronic series A=B=C=D=E1,” J. Mol. Struct. Theochem., 234, 279–290 (1991).

    Article  Google Scholar 

  28. K. O. Christe, W. W. Wilson, J. A. Sheehy, and J. A. Boatz, “N +5 : a novel homoleptic polynitrogen ion as a high energy density material,” Angew. Chemie, Int. Ed., 38, Nos. 13/14, 2004–2009 (1999).

    Google Scholar 

  29. M. T. Nguyen and T. K. Ha, “Theoretical study of the pentanitrogen (N +5 ),” Chem. Phys. Lett., 317, 135–141 (2000).

    Article  ADS  Google Scholar 

  30. D. A. Dixon, D. Feller, K. O. Christe, et al. “Enthalpies of formation of gas-phase N3, N 3 , N 5 , and N 5 from ab initio molecular orbital theory, stability predictions for N +5 N 3 and N +5 N 5 , and experimental evidence for the instability of N +5 N 3 ,” J. Amer. Chem. Soc., 126, No. 3, 834–843 (2004).

    Article  Google Scholar 

  31. X. Wang, H. R. Hu, A. M. Tian, N. B. Wong, S. H. Chien, and W. K. Li, “An isometric study of N +5 , N5, and N 5 : a Gaussian-3 investigation,” Chem. Phys. Lett., 329, 483–489 (2000).

    Article  ADS  Google Scholar 

  32. M. T. Nguyen, M. A. McGinn, A. F. Hegarty, and J. Elguero, “Can the pentazole anion (N 5 ) be isolated and/or trapped in metal complexes?,” Polyhedron, 4, No. 10, 1721–1726 (1985).

    Article  Google Scholar 

  33. Q. S. Li and Y. D. Liu, “Theoretical studies of the N6 potential energy surface,” J. Phys. Chem. A, 106, 9538–9542 (2002).

    Article  Google Scholar 

  34. R. Engelke and J. R. Stine, “Is N8 cubane stable?,” J. Phys. Chem., 94, 5689–5694 (1990).

    Article  Google Scholar 

  35. M. L. Leininger, C. D. Sherrill, and H. F. Schaefer, “N8: Structure analogous to pentalene, and other high energy density minima,” J. Phys. Chem., 99, 2324–2328 (1995).

    Article  Google Scholar 

  36. L. Gagliardi, S. Evangelisti, A. Bernhardsson, R. Lindh, and B. O. Roos, “Dissociation reaction of N8 azapentalene to 4N2: A theoretical study,” Int. J. Quant. Chem., 77, 311–315 (2000).

    Article  Google Scholar 

  37. M. N. Glukhovtsev, H. J. Jiao, and P. V. Schleyer, “Besides N2, what is the most stable molecule composed only of nitrogen atoms?,” Inorg. Chem., 35, No. 24, 7124–7133 (1996).

    Article  Google Scholar 

  38. S. Li, H. Qu, and Q. S. Li, “Quantum chemical study on N60,” Chem. J. Chinese Univ., 18, 297 (1997).

    Google Scholar 

  39. M. R. Manaa, “Toward new energy-rich molecular systems: from N10 to N60,” Chem. Phys. Lett., 331, Nos. 2–4, 262–268 (2000).

    Article  ADS  Google Scholar 

  40. L. J. Wang and Z. M. Zgierski, “Super-high energy-rich nitrogen cluster N60,” Chem. Phys. Lett., 376, No. 5–6, DOI 698703 (2003).

    Google Scholar 

  41. H. Zhoua, N.-B. Wongb, and A. Tiana, “Theoretical study on the cylinder-shaped N78 cage,” J. Mol. Graphics Modell., 25, No. 4, 578–583 (2006).

    Article  Google Scholar 

  42. H. Zhoua and N.-B. Wongb, “Theoretical investigation on the cylinder-shaped N84 cage,” Chem. Phys. Lett., 449, Nos. 4–6, 272–275, (2007).

    Article  ADS  Google Scholar 

  43. S. P. Lewis and M. L. Cohen, “High-pressure atomic phases of solid nitrogen,” Phys. Rev. B, 46, 11117–11120 (1992).

    Article  ADS  Google Scholar 

  44. C. Mailhiot, L. H. Yang, and A. K. McMahan, “Polymeric nitrogen,” Phys. Rev. B, 46, No. 22, 14419–14435 (1992).

    Article  ADS  Google Scholar 

  45. W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, “Prediction of new phases of nitrogen at high pressure from first-principles simulations,” Phys. Rev. Lett., 93, 125501–125505 (2004).

    Article  ADS  Google Scholar 

  46. R. Caracas and R. J. Hemley, “New structures of dense nitrogen: pathways to the polymer phase,” Chem. Phys. Lett., 442, Nos. 1–3, 65–70 (2007).

    Article  ADS  Google Scholar 

  47. F. Zahariev, S. V. Dudiy, J. Hooper, F. Zhang, and T. K. Woo, “Systematic method to new phases of polymeric nitrogen under high-pressure,” Phys. Rev. Lett., 97, 155503 (2006).

    Article  ADS  Google Scholar 

  48. H. Abou-Rachid, A. Hu, D. Arato, et al., “Novel nanoscale high energetic materials: nanostructure polymeric nitrogen and polynitrogen,” in: 7th Int. Symp. on Special Topics in Chem. Prop., Book of Abstracts, Kyoto, Japan (2007), p. 163; See also in: K. K. Kuo and K. Hori (eds.), Advancements in Energetic Materials and Chemical Propulsion, Begell House, New York, (2008), pp. 364–376.

    Google Scholar 

  49. H. Abou-Rachid, A. Hu, V. Timoshevskii, et al., “Nanoscale high energetic materials: A polymeric nitrogen chain N8 confined inside a carbon nanotube,” Phys. Rev. Lett., 100, No. 1–4, 196401 (2008).

    Article  ADS  Google Scholar 

  50. A. E. Douglas and W. J. Jones, “The 2700 Å bands of the N3 molecule,” Can. J. Phys., 43, 2216 (2008).

    ADS  Google Scholar 

  51. N. Hansen and A. M. Wodtke, “Velocity map ion imaging of chlorine azide photolysis: Evidence for photolytic production of cyclic-N3,” J. Phys. Chem. A, 107, 10608 (2003).

    Article  Google Scholar 

  52. N. Hansen, A. M. Wodtke, S. J. Goncher, J. C. Robinson, N. E. Sveum, and D. M. Neumark, “Photofragment translation spectroscopy of ClN3 at 248 nm: Determination of the primary and secondary dissociation pathways,” J. Chem. Phys., 123, 104305 (2005).

    Article  ADS  Google Scholar 

  53. J. Zhang, Y. Chen, K. Yuan, S. A. Harich, X. Wang, X. Yang, P. Zhang, Z. Wang, K. Morokuma, and A. M. Wodtke, “An experimental and theoretical study of ring closing dynamics in HN3,” Phys. Chem. Chem. Phys., 8, 1690–1696 (2006).

    Article  Google Scholar 

  54. C. Larson, Yu. Ji, P. C. Samartzis, et al., “Observation of photochemical C-N bond cleavage in CH3N3: A new photochemical route to cyclic N3,” J. Phys. Chem., 112, No. 6, 1105–1111 (2008).

    Google Scholar 

  55. J. M. Dyke, H. N. B. Jonathan, A. E. Lewis, and A. Morris, “Vacuum ultraviolet photoelectron spectroscopy of transient species. Pt 15. The N3(X 2II) radical,” Mol. Phys., 47, 1231–1240 (1982).

    Article  ADS  Google Scholar 

  56. C. L. Haynes, W. Freysinger, and P. B. Armentrout, “Collision-induced dissociation of N +3 (X 3 σ ) with NE, AR, KR, and XE,” Int. J. Mass Spectr., 150, 267–278 (1995).

    Article  ADS  Google Scholar 

  57. P. C. Samartzis, J. J. M. Lin, T. T. Ching, et al. “Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3,” J. Chem. Phys., 123, No. 5, 051101 (2005).

    Article  ADS  Google Scholar 

  58. M. Whitaker, M. A. Biondi, and R. Johnsen, “Electron-temperature dependence of dissociative recombination of electrons with N +2 · N2 dimer ions,” Phys. Rev. A, 24, 743–745 (1981).

    Article  ADS  Google Scholar 

  59. L. B. Knight, K. D. Johannessen, D. C. Cobranchi, E. A. Earl, D. Feller, and E. R. Davidson, “ESR and ab initio theoretical studies of the cation radicals 14N +4 and 15N +4 . The trapping of ion-net at 4 K,” J. Chem. Phys., 87, 885–897 (1987).

    Article  ADS  Google Scholar 

  60. J. P. Zheng, J. Waluk, J. Spanget-Larsen, D. M. Blake, and J. G. Radziszewski, “Tetrazete (N4). Can it be prepared and observed?,” Chem. Phys. Lett., 328, 227–233 (2000).

    Article  ADS  Google Scholar 

  61. F. Cacase, G. de Petris, and A. Troiani, “Experimental detection of tetranitrogen,” Science, 295, 480–481 (2002).

    Article  ADS  Google Scholar 

  62. F. Cacase, “From N2 and O2 to N4 and O4: Pneumatic chemistry in the 21st centry,” Chem. Europ. J., 8, 3839–3847 (2002).

    Google Scholar 

  63. E. E. Renie and P. M. Mayer, “Confirmation of the long-lived tetra-nitrogen (N4) molecule using neutralization-reionization mass spectrometry and ab initio calculations,” J. Chem. Phys., 120, No. 22, 10561–10578 (2004).

    Article  ADS  Google Scholar 

  64. P. Zurer, “Chemistry’s top five achievements in 1999,” Chem. Eng. News, 77, No. 4, 7 (1999).

    Google Scholar 

  65. A. Vij, W. W. Wilson, V. Vij, F. S. Tham, J. A. Sheehy, and K. O. Christe, “Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N +5 ,” J. Amer. Chem. Soc., 123, 6308 (2001).

    Article  Google Scholar 

  66. K. O. Christe, “Recent advances in the chemistry of N, N and high-oxygen compounds,” Propellants, Explosives, Pyrotechnics, 32, No. 3, 194–204 (2007).

    Article  Google Scholar 

  67. A. Vij, J. G. Pavlovich, W. W. Wilson, V. Vij, and K. O. Christe, “Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N 5 , Angew. Chemie, Intern. Ed., 41, S. 3051 (2002).

    Article  Google Scholar 

  68. M. I. Eremets, R. J. Eremets, and H.-k. Mao, “Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability,” Nature, 411, 170–174 (2001).

    Article  ADS  Google Scholar 

  69. M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, “Single-bonded cubic form of nitrogen,” Nature Mater., 3, 558–563 (2004).

    Article  ADS  Google Scholar 

  70. M. Popov, “Raman and IR study of high-pressure atomic phase of nitrogen,” Phys. Lett. A, 334, 317–325 (2005).

    Article  ADS  Google Scholar 

  71. M. I. Eremets, A. G. Gavriliuk, N. R. Serebryanaya, I. A. Trojan, D. A. Dzivenko, R. Boehler, H.-k. Mao, and R. J. Hemley, “Structural transformation of molecular nitrogen to a single-bonded atomic state at high pressures,” J. Chem. Phys., 121, No. 22, 11296–11300 (2004).

    Article  ADS  Google Scholar 

  72. M. I. Eremets, A. G. Gavriliuk, and I. A. Trojan, “Single-crystalline polymeric nitrogen,” Appl. Phys. Lett., 90, Nos. 1–3, 171904 (2007).

    Article  ADS  Google Scholar 

  73. M. J. Lipp, J. P. Klepeis, B. J. Baer, et al., “Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating,” Phys. Rev. B, 76, 014113 (1–5) (2007).

    Article  ADS  Google Scholar 

  74. A. F. Goncharov, J. C. Crowhurst, V. V. Struzhkin, and R. J. Hemley, “Triple point on the melting curve and polymorphism of nitrogen at high pressure,” Phys. Rev. Lett., 101, 095502 (1–4) (2008).

    Article  ADS  Google Scholar 

  75. X-Q. Chen, C. L. Fu, and R. Podloucky, “Bonding and strength of solid nitrogen in the cubic gauche (Cg-N) structure,” Phys Rev. B, 77, 064103 (1–6) (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zarko.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 46, No. 2, pp. 3–16, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarko, V.E. Searching for ways to create energetic materials based on polynitrogen compounds (review). Combust Explos Shock Waves 46, 121–131 (2010). https://doi.org/10.1007/s10573-010-0020-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-010-0020-x

Key words

Navigation