Skip to main content
Log in

Conferring antioxidant capacity to cellulose based materials by using enzymatically-modified products

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A new, industrially feasible method for conferring cellulosic substrates antioxidant properties by using enzymatic products was developed. The method allows cellulose surfaces such as those of paper sheets to be conferred antioxidant capacity by using a functionalization solution (FS) obtained from an enzymatic reaction. Various laccases and different phenolic compounds (PhCs) potentially possessing antioxidant action were used to prepare the FS. Antioxidant capacity was assessed by using UV spectrophotometry to monitor the inhibition of ABTS radical cation (ABTS·+) in the presence of antioxidants. Based on the results, enzymatic modification of the phenolic compound in the FS increases the bonding strength of its components to cellulosic materials. Evidences on the grafting of the FS onto the cellulosic sheets, and changes in the chemical structure of the resulting oxidized form of PhCs were assessed by using ATR–FTIR. The level of antioxidant capacity achieved depends on the enzyme type, the chemical structure of the compounds in FS, and the presence of lignosulfonates in it. The potential of the proposed method for conferring antioxidant properties to cellulose-based materials by surface application of a product obtained from an enzymatic reaction is demonstrated here for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

Fb:

Cerrena unicolor enzyme supplied by Fungal Bioproducts®

FS:

Functionalization solution containing Lacc, PhC, and SL

FSU:

Functionalization solution uptake

KFS:

Control FS containing one or two of the additives Lacc, LG, SL in various combinations

Lacc:

Laccase

LG:

Lauryl gallate, dodecyl 3,4,5-trihydroxybenzoate

Mt:

Myceliophthora thermophila enzyme

PhC:

Phenolic compound

PS:

Paper sheets

SL:

Sulfonated lignin

TEAC:

Trolox equivalent antioxidant capacity

Tv:

Trametes villosa enzyme

References

  • Aracri E, Vidal T (2012) Enhancing the effectiveness of a laccase-TEMPO treatment has a biorefining effect on sisal cellulose fibres. Cellulose 19:867–877. doi:10.1007/s10570-012-9686-4

    Article  CAS  Google Scholar 

  • Aracri E, Fillat A, Colom JF et al (2010) Enzymatic grafting of simple phenols on flax and sisal pulp fibres using laccases. Bioresour Technol 101:8211–8216. doi:10.1016/j.biortech.2010.05.080

    Article  CAS  Google Scholar 

  • Aracri E, Roncero MB, Vidal T (2011) Studying the effects of laccase-catalysed grafting of ferulic acid on sisal pulp fibers. Bioresour Technol 102:7555–7560

    Article  CAS  Google Scholar 

  • Arts MJTJ, Haenen GRMM, Voss H-P, Bast A (2001) Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem Toxicol 39:787–791

    Article  CAS  Google Scholar 

  • Arts MJTJ, Dallinga JS, Voss H-P et al (2004) A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem 88:567–570. doi:10.1016/j.foodchem.2004.02.008

    Article  CAS  Google Scholar 

  • Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Evaluation of the antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885. doi:10.1021/jf00035a014

    Article  CAS  Google Scholar 

  • Barbosa-Pereira L, Cruz JM, Sendón R et al (2013) Development of antioxidant active films containing tocopherols to extend the shelf life of fish. Food Control 31:236–243

    Article  CAS  Google Scholar 

  • Blauz A, Pilaszek T, Grzelak A et al (2008) Interaction between antioxidants in assays of total antioxidant capacity. Food Chem Toxicol 46:2365–2368

    Article  CAS  Google Scholar 

  • Cusola O, Roncero MB, Valls C, Vidal T (2012) Preparación enzimática acuosa aislada y uso para la funcionalización de la superficie del papel o soportes celulósicos. P201230852

  • Cusola O, Valls C, Vidal T, Roncero MB (2013) Application of surface enzyme treatments using laccase and a hydrophobic compound to paper-based media. Bioresour Technol 131:521–526. doi:10.1016/j.biortech.2012.12.186

    Article  Google Scholar 

  • Cusola O, Valls C, Vidal T, Roncero MB (2014) Rapid functionalisation of cellulose-based materials using a mixture containing laccase activated lauryl gallate and sulfonated lignin. Holzforsch Int J Biol Chem Phys Technol Wood 0:1–9. doi:10.1515/hf-2013-0128

    Google Scholar 

  • Fillat A, Gallardo O, Vidal T et al (2012) Enzymatic grafting of natural phenols to flax fibres: development of antimicrobial properties. Carbohydr Polym 87:146–152

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muñoz P et al (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51. doi:10.1016/j.tifs.2013.10.008

    Article  Google Scholar 

  • Hsu CF, Kilmartin PA (2012) Antioxidant capacity of robust polyaniline-ethyl cellulose films. React Funct Polym 72:814–822

    Article  CAS  Google Scholar 

  • Jansen J, Cassano R, Trombino S et al (2011) Polymeric membranes with antioxidant activity based on cellulose esters and poly(vinylidene fluoride)/cellulose ester blends. Cellulose 18:359–370. doi:10.1007/s10570-011-9492-4

    Article  CAS  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. doi:10.1021/jf990146l

    Article  Google Scholar 

  • Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll 29:290–297

    Article  CAS  Google Scholar 

  • Kodal Coşkun B, Çalikoğlu E, Karagöz Emiroğlu Z, Candoğan K (2014) Antioxidant active packaging with soy edible films and oregano or thyme essential oils for oxidative stability of ground beef patties. J Food Qual 37:203–212. doi:10.1111/jfq.12089

    Article  Google Scholar 

  • Kubo I, Kinst-Hori I, Kubo Y et al (2000) Molecular design of antibrowning agents. J Agric Food Chem 48:1393–1399

    Article  CAS  Google Scholar 

  • Kubo I, Masuoka N, Xiao P, Haraguchi H (2002) Antioxidant activity of dodecyl gallate. J Agric Food Chem 50:3533–3539. doi:10.1021/jf011250h

    Article  CAS  Google Scholar 

  • Kuskoski EM, Asuero AG, Troncoso AM et al (2005) Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnol Aliment 25:726–732

    Article  CAS  Google Scholar 

  • López de Dicastillo C, Alonso JM, Catalá R et al (2010) Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. J Agric Food Chem 58:10958–10964. doi:10.1021/jf1022324

    Article  Google Scholar 

  • López-de-Dicastillo C, Gómez-Estaca J, Catalá R et al (2012) Active antioxidant packaging films: development and effect on lipid stability of brined sardines. Food Chem 131:1376–1384. doi:10.1016/j.foodchem.2011.10.002

    Article  Google Scholar 

  • Ma X, Yuan C, Liu X (2013) Mechanical, microstructure and surface characterizations of carbon fibers prepared from cellulose after liquefying and curing. Materials 7:75–84. doi:10.3390/ma7010075

    Article  Google Scholar 

  • Morgado D, Rodrigues B, Almeida E et al (2013) Bio-based films from linter cellulose and its acetates: formation and properties. Materials 6:2410–2435. doi:10.3390/ma6062410

    Article  CAS  Google Scholar 

  • Prasetyo EN, Kudanga T, Steiner W et al (2010) Laccase-generated tetramethoxy azobismethylene quinone (TMAMQ) as a tool for antioxidant activity measurement. Food Chem 118:437–444. doi:10.1016/j.foodchem.2009.04.102

    Article  Google Scholar 

  • Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781. doi:10.3390/ma6030738

    Article  CAS  Google Scholar 

  • Raheem D (2013) Application of plastics and paper as food packaging materials—an overview. Emirates J Food Agric 25:177–188

    Google Scholar 

  • Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. doi:10.1016/S0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  • Rice Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. doi:10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  • Robards K, Prenzler PD, Tucker G et al (1999) Phenolic compounds and their role in oxidative processes in fruits. Food Chem 66:401–436. doi:10.1016/S0308-8146(99)00093-X

    Article  CAS  Google Scholar 

  • Rudra SG, Singh V, Jyoti SD, Shivhare US (2013) Mechanical properties and antimicrobial efficacy of active wrapping paper for primary packaging of fruits. Food Biosci 3:49–58. doi:10.1016/j.fbio.2013.07.002

    Article  CAS  Google Scholar 

  • Saastamoinen P, Mattinen ML, Hippi U et al (2012) Laccase aided modification of nanofibrillated cellulose with dodecyl gallate. BioResources 7:5749–5770

    Article  Google Scholar 

  • Serpen A, Capuano E, Fogliano V, Gökmen V (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55:7676–7681

    Article  CAS  Google Scholar 

  • Serrano Cruz MR, Villanueva-Carvajal A, Rosales EJM et al (2013) Controlled release and antioxidant activity of Roselle (Hibiscus sabdariffa L.) extract encapsulated in mixtures of carboxymethyl cellulose, whey protein, and pectin. LWT Food Sci Technol 50:554–561

    Article  CAS  Google Scholar 

  • Shogren RL, Biswas A (2013) Preparation of starch–sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr Polym 91:581–585. doi:10.1016/j.carbpol.2012.08.079

    Article  CAS  Google Scholar 

  • Spizzirri UG, Iemma F, Puoci F et al (2009) Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules 10:1923–1930. doi:10.1021/bm900325t

    Article  CAS  Google Scholar 

  • Tian F, Decker EA, Goddard JM (2012) Development of an iron chelating polyethylene film for active packaging applications. J Agric Food Chem 60:2046–2052. doi:10.1021/jf204585f

    Article  CAS  Google Scholar 

  • Valls C, Roncero MB (2012) Antioxidant property of TCF pulp with a high hexenuronic acid (HexA) content. Holzforschung 67:257. doi:10.1515/hf-2012-0114

    Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to the Integrated Project of the Sixth Framework Program BIORENEW (NMP2-CT-2006-026456). The authors also thank the “Ministerio de Economía y Competitividad” of Spain for their support in this work under the projects BIOSURFACEL CTQ2012-34109 (funding also from the “Fondo Europeo de Desarrollo Regional” FEDER) and BIOPAPµFLUID (CTQ2013-48995-C2-1-R). Special thanks are also due to the consolidated research group AGAUR 2014 SGR 534 at Universitat de Barcelona (UB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Blanca Roncero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cusola, O., Valls, C., Vidal, T. et al. Conferring antioxidant capacity to cellulose based materials by using enzymatically-modified products. Cellulose 22, 2375–2390 (2015). https://doi.org/10.1007/s10570-015-0668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0668-1

Keywords

Navigation