Skip to main content
Log in

Development of planetary ephemerides EPM and their applications

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper outlines the progress in development of the numerical planet ephemerides EPM—Ephemerides of Planets and the Moon. EPM was first created in the 1970s in support of Russian space flight missions and constantly improved at IAA RAS. Comparison between various available EPM ephemerides (EPM2004, EPM2008, EPM2011) is shown. The first results of the updated EPM2013 version which takes into account the two-dimensional annulus of small asteroids are presented. Currently two main factors drive the progress of planet ephemerides: dynamical models of planet motion and observational data, with the crucial role of spacecraft ranging. EPM ephemerides are the basis for the Russian Astronomical and Nautical Astronomical Yearbooks, are planned to use in the GLONASS and LUNA-RESOURCE programs, and are being used for determination of physical parameters: masses of asteroids, planet rotation parameters and topography, the \(GM_\odot \) and its secular variation, the PPN parameters, and the upper limit on the mass of dark matter in the Solar System. The files containing polynomial approximation for EPM ephemerides (EPM2004, EPM2008, EPM2011) along with TTTDB and ephemerides of Ceres, Pallas, Vesta, Eris, Haumea, Makemake, and Sedna are available from ftp://quasar.ipa.nw.ru/incoming/EPM/. Files are provided in IAA’s binary and ASCII formats, as well as in the SPK format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. Washington (1964)

  • Aleshkina, E.Y., Krasinsky, G.A., Vasilyev, M.V.: Analysis of LLR data by the program system ERA. In: Wytrzyszczak, I.M., Lieske, J.H., Feldman, R.A. (eds.) Dynamics and Astrometry of Natural and Artificial Celestial Bodies, IAU Colloquium, vol. 165, pp. 227–238. Kluwer, Dordrecht (1997)

  • Brumberg, V.A.: Essential relativistic celestial mechanics. Adam Huger, Bristol, Philadelphia and New York (1991)

    MATH  Google Scholar 

  • Carry, B.: Density of asteroids. Planet. Space Sci. 73, 98–118 (2012)

    Article  ADS  Google Scholar 

  • Duboshin, G.N.: Theory of gravitation. Phyzmatgiz, Moscow (1961) (in Russian)

  • Duriez, L., Vienne, A.: Theory of motion and ephemerides of Hyperion. A&A 324, 366–380 (1997)

    ADS  Google Scholar 

  • Fairhead, L., Bretagnon, P.: An analytical formula for the time transformation TB-TT. A&A 229, 240–247 (1990)

    ADS  Google Scholar 

  • Fienga, A.: Private communications 2006–2014

  • Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. A&A 477, 315–327 (2008)

    Article  ADS  Google Scholar 

  • Fienga, A., Laskar, J., Morley, T., et al.: INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions. A&A 507, 1675–1686 (2009)

    Article  ADS  Google Scholar 

  • Fienga, A., Laskar, J., Kuchynka, P., et al.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011)

    Article  ADS  Google Scholar 

  • Folkner, W.M.: Private communications 2006–2014

  • Folkner, W.M.: Results from VLBI measurement of Venus on April 1, 1994, JPL IOM 335.1-94-014 (1994)

  • Folkner, W. M.: New Horizons project. JPL Interoffice Memorandum, Pasadena, 392R–14-003, 1–11 (2014)

  • Folkner, W.M., Williams, J.G., Boggs D.H., et al.: The Planetary and Lunar Ephemeris DE 430 and DE 431, JPL IPN progress report 42–196 (2014)

  • Hildebrand, C.E., Iijima, B.A., Kroger, P.M., Folkner, W.M.: Radio-planetary frame tie from Phobos-2 VLBI data. JPL TDA Prog. Rep. 42–119, 46–82 (1994)

    Google Scholar 

  • Hilton, J.L., Hohenkerk, C.Y.: A comparison of the high accuracy planetary ephemerides DE421, EPM2008, and INPOP08. In: Proceedings of the “Journees-2010 / Systems de reference spatio-temporels”, / Ed. Capitaine N. Observatoire de Paris, pp. 77–80 (2011)

  • Jones, D.L., Fomalont, E., Dhawan V., et al.: Very long baseline array astrometric observations of the Cassini spacecraft at Saturn. Astron. J. 141(2), Article 29 (2011)

  • Konopliv, A.S., Asmar, S.W., Folkner, W.M., et al.: Mars high resolution gravity field from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    Article  ADS  Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., Chunajeva, L.I.: The motion of major planets from observations 1769–1988 and some astronomical constants. Celest. Mech. Dynam. Astron. 55, 1–23 (1993)

    Article  ADS  Google Scholar 

  • Krasinsky, G.A., Vasilyev, M.V.: ERA: knowledge base for ephemeris and dynamic astronomy. In: Wytrzyszczak, I.M., Lieske, J.H., Feldman, R.A. (eds.) Dynamics and Astrometry of Natural and Artificial Celestial Bodies, IAU Colloquium, vol. 165, pp. 239–244. Kluwer, Dordrecht (1997)

    Chapter  Google Scholar 

  • Krasinsky, G.A.: Dynamical history of the Earth–Moon system. Celest. Mech. Dyn. Astron. 84(1), 27–55 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., Yagudina, E.I.: Hidden mass in the asteroid belt. Icarus 158(1), 98–105 (2002)

    Article  ADS  Google Scholar 

  • Kuchynka, P., Folkner, W.M.: A new approach to determining asteroid masses from planetary range measurements. Icarus 222(1), 243–253 (2013)

    Article  ADS  Google Scholar 

  • Laskar, J., Jacobson, R.A.: GUST86—an analytical ephemeris of the Uranian satellites. A&A 188, 212–224 (1987)

    ADS  Google Scholar 

  • Lieske, J.H.: Theory of motion of Jupiter’s Galilean satellites. Astron. Astrophys. 56, 333–352 (1977)

    MATH  ADS  Google Scholar 

  • Love, S.G., Brownlee, D.E.: The IRAS dust band contribution to the interplanetary dust complex—evidence seen at 60 and 100 microns. Astron. J. 104(6), 2236–2242 (1992)

    Article  ADS  Google Scholar 

  • Luzum, B., Capitaine, N., Fienga, A., et al.: The IAU 2009 system of astronomical constants: tlhe report of the IAU working group on numerical standards for fundamental astronomy. Celest. Mech. Dyn. Astron. 110, 293–304 (2011)

    Article  MATH  ADS  Google Scholar 

  • McBride, N., Hughes, D.W.: The spatial density of asteroids and its variation with asteroidal mass. MNRAS 244, 513–520 (1990)

    ADS  Google Scholar 

  • Newhall, X.X., Standish, E.M., Williams, J.G.: DE102: a numerical integrated ephemeris of the Moon and planets spanning forty-four centuries. A&A 125, 150–167 (1983)

    MATH  ADS  Google Scholar 

  • Pavlov, D.A., Skripnichenko, V.I.: Preliminary results in implementation of a cross-platform version of the ERA software system (in Russian). IAA RAS Trans. 28, 1–8 (2014) Science, St. Petersburg

  • Petit, J.-M., Chambers, J., Franklin, F., Nagasawan, M.: Primordial excitation and depletion of the main belt. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III. University of Arizona Press, Tucson, pp. 711–723 (2002)

  • Pitjev, N.P., Pitjeva, E.V.: Constraints on dark matter in the solar system. Ast. Lett. 39, 141–149 (2013)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V.: EPM98: the new numerical motion theory for planets and its comparison with DE403 ephemerides of Jet Propulsion Laboratory, Trudy Inst. Appl. Astron. Russ. Acad. Sci. 3, 5–23 (1998)

    Google Scholar 

  • Pitjeva, E.V.: Study of Mars dynamics from analysis of Viking and Pathfinder lander radar data. IAA RAS Trans. 4, 22–35 (1999). St. Petersburg (in Russian)

    Google Scholar 

  • Pitjeva, E.V.: Modern numerical ephemerides of planets and the importance of ranging observations for their creation. Celest. Mech. Dyn. Astron. 80, 249–271 (2001)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V.: High-precision ephemerides of planets—EPM and determination of some astronomical constants. Solar Syst. Res. 39(3), 176–186 (2005)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V.: Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft. In: Lazzaro, D., Prialnik, D., Schulz, R., Fernandez, J.A. (eds.) Proceedings of 263th IAU Symposium on Icy Bodies of the Solar System, pp 93–97. Cambridge University Press, Cambridge (2010a)

  • Pitjeva, E. V.: EPM ephemerides and relativity. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H., (eds.) Proceedings of 261th IAU Symposium. Relativity in Fundamental Astronomy: Dynamics, Reference, Frames, and Data Analysis, pp. 170–178. Cambridge University Press, Cambridge (2010b)

  • Pitjeva E.V.: Values of some astronomical parameters (\( au, GM_{\odot }, M_{\odot }\)), their possible variations from modern observations and interrelations between them. In: Schuh, H., Bohm, S., Nilsson, T., Capitaine, N. (eds.) In: Proceedings of the “Journees-2011 / Systems de Reference Spatio-temporels, pp. 17–20. Vienna (2012)

  • Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Sol. Syst. Res. 47, 386–402 (2013)

    Article  ADS  Google Scholar 

  • Pitjeva, E., Bratseva, O., Panfilov, V.: EPM—Ephemerides of Planets and the Moon of IAA RAS: their model, accuracy, availability. In: Capitaine N. (ed.) Proceeedings of the “Journees-2010 / Systems de Reference Spatio-temporels, pp. 49–54. Observatoire de Paris (2011)

  • Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78–87 (2012)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V., Pitjev, N.P.: Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. MNRAS 432, 3431–3437 (2013)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V., Standish, E.M.: Proposals for the masses of the three largest asteroids, the Moon–Earth mass ratio and the Astronomical Unit. Celest. Mech. Dyn. Astr. 103(4), 365–372 (2009)

    Article  MATH  ADS  Google Scholar 

  • Poroshina, A., Kosmodamianskiy, G., Zamarashkina, M.: Construction of the numerical motion theories for the main satellites of Mars, Jupiter, Saturn and Uranus. IAA RAS Trans. 26, 75–87 (2012) Science, St. Petersburg

  • Rossi, G.B., Vieira-Martins, R., Camargo, J.I., Assafin, M.: Detailed astrometric analysis of Pluto. Am. Astron. Soc. DDA Meet. 44, 204.43 (2013)

    Google Scholar 

  • Russell, C.T., Raymond, C.A., Coradini, A., et al.: Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)

    Article  ADS  Google Scholar 

  • Standish Jr, E.M.: Orientation of the JPL ephemerides, DE200/LE200, to the dynamical equinox of J2000. A&A 114, 297–302 (1982)

    ADS  Google Scholar 

  • Standish Jr, E.M.: The observational basis for JPL’s DE200, planetary ephemerides of the Astronomical Almanac. A&A 233, 252–271 (1990)

    ADS  Google Scholar 

  • Standish, E. M.: JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL Interoffice Memorandum 312.F-98-048, 1–18 (1998)

  • Standish, E.M.: Planetary and lunar ephemerides: testing alternate gravitational theories. In: Proceedingd AIP Conference of 3rd Mexican Meeting on Mathematicaland Experimental Physics, vol. 977, pp. 254–263 (2008)

  • Standish, E.M., Newhall, XX, Williams, J.G., Folkner, W.M.: JPL Planetary and Lunar Ephemerides, DE403/LE403. JPL Interoffice Memorandum, Pasadena, 314.10-127, pp. 1–22 (1995)

  • Standish, E.M., Williams, J.G.: Explanatory Supplement to the Astronomical, 3rd edn, (chapter 8), University Science Books (2012)

  • Tedesco, E.F., Noah, P.V., Noah, M., Price, S.D.: The supplemental IRAS minor planet survey. Astron. J. 123, 1056–1085 (2002a)

    Article  ADS  Google Scholar 

  • Tedesco, E.F., Egan, M.P., Price, S.D.: The midcourse space experiment infrared minor planet survey. Astron J. 124, 583–591 (2002b)

    Article  ADS  Google Scholar 

  • Vasilyev, M.V., Yagudina, E.I.: Russian Lunar ephemerides EPM-ERA 2012. Sol. Syst. Res. 49, 56–76 (2014)

    Google Scholar 

  • Verma, A.K., Fienga, A., Laskar, J. et al.: Use of MESSENGER radioscience data to improve planetary ephemeris and to test general relativity. A&A 561, id. A115, 13 p. (2014)

  • Vienne, A., Duriez, L.: TASS 1.6: ephemerides of the major Saturnian satellites. A&A 297, 588–605 (1995)

    ADS  Google Scholar 

  • Vinogradova, T.: The mass of the asteroid belt. Trudy Inst. Appl. Astron. Russ. Acad. Sci. 26, 110–115 (2012)

    Google Scholar 

  • Yeomans, D.K., Antreasian, P.G., Barriot, J.-P., et al.: Radio science results during the NEAR-Shoemaker spacecraft rendezvous with Eros. Science 289, 2085–2088 (2000)

    Article  ADS  Google Scholar 

  • Yoder, C.F., Standish, E.M.: Martian precession and rotation from Viking lander range data. J. Geophys. Res. 102, 4065–4080 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the RAS Presidium Program 22 “Fundamental Problems of Research and Exploration of the Solar System”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pitjeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitjeva, E.V., Pitjev, N.P. Development of planetary ephemerides EPM and their applications. Celest Mech Dyn Astr 119, 237–256 (2014). https://doi.org/10.1007/s10569-014-9569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9569-0

Keywords

Navigation