Skip to main content
Log in

Ir-Catalysed Nitrous oxide (N2O) Decomposition: Effect of Ir Particle Size and Metal–Support Interactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of the morphology of Ir particles supported on γ-Al2O3, 8 mol%Y2O3-stabilized ZrO2 (YSZ), 10 mol%Gd2O3-doped CeO2 (GDC) and 80 wt%Al2O3–10 wt%CeO2–10 wt%ZrO2 (ACZ) on their stability on oxidative conditions, the associated metal–support interactions and activity for catalytic decomposition of N2O has been studied. Supports with intermediate or high oxygen ion lability (GDC and ACZ) effectively stabilized Ir nanoparticles against sintering, in striking contrast to supports offering negligible or low oxygen ion lability (γ-Al2O3 and YSZ). Turnover frequency studies using size-controlled Ir particles showed strong structure sensitivity, de-N2O catalysis being favoured on large catalyst particles. Although metallic Ir showed some de-N2O activity, IrO2 was more active, possibly present as a superficial overlayer on the iridium particles under reaction conditions. Support-induced turnover rate modifications, resulted from an effective double layer [Oδ−–δ+](Ir) on the surface of iridium nanoparticles, via O2− backspillover from the support, were significant in the case of GDC and ACZ.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ravishankara AR, Daniel JS, Portmann RW (2009) Science 326:123

    Article  CAS  Google Scholar 

  2. Li L, Xu J, Hu J, Han J (2014) Environ Sci Technol 48:5290

    Article  CAS  Google Scholar 

  3. Centi G, Perathoner S, Vazzana F, Marella M, Tomaselli M, Mantegazza M (2000) Adv Environ Res 4:325

    Article  Google Scholar 

  4. Liu Z, He F, Ma L, Peng S (2016) Catal Serv Asia 20:121

    Article  CAS  Google Scholar 

  5. Tolman WB (2010) Angew Chem Int Ed 49:1018

    Article  CAS  Google Scholar 

  6. Kapteijn FJ, Rodriquez-Mirasol JA, Moulijn JA (1996) Appl Catal B 9:25

    Article  CAS  Google Scholar 

  7. Li Y, Armor JN (1992) Appl Catal B 1:L21

    Article  CAS  Google Scholar 

  8. Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 46:4226

    Article  CAS  Google Scholar 

  9. Pachatouridou E, Papista E, Iliopoulou EF, Delimitis A, Goula G, Yentekakis IV, Marnellos GE, Konsolakis M (2015) J Environ Chem Eng 3:815

    Article  CAS  Google Scholar 

  10. Fiedorow RMJ, Chahar BS, Wanke SE (1978) J Catal 51:193

    Article  CAS  Google Scholar 

  11. Yentekakis IV, Goula G, Panagiotopoulou P, Kampouri S, Taylor MJ, Kyriakou G, Lambert RM (2016) Appl Catal B 192:357

    Article  CAS  Google Scholar 

  12. Vagenas CG (2013) Catal Lett 143, 1085

    Article  Google Scholar 

  13. Vernoux P, Lizarraga L, Tsampas MN, Sapountzi FM, De Lucas-Consuegra A, Valverde J-L, Souentie S, Vayenas CG, Tsiplakides D, Balomenou S, Baranova EA (2013) Chem Rev 113:8192

    Article  CAS  Google Scholar 

  14. Ohnishi C, Iwamoto S, Inoue M (2008) Chem Eng Sci 63:5076

    Article  CAS  Google Scholar 

  15. Duprez D, Descorme C, Birchem T, Rohart E (2001) Top Catal 16/17:49

    Article  CAS  Google Scholar 

  16. Ivanova AS (2009) Kinet Catal 50:797

    Article  CAS  Google Scholar 

  17. Damyanova S, Bueno JMC (2003) Appl Catal A 253:135

    Article  CAS  Google Scholar 

  18. Montini T, Melchionna M, Monai M, Foriasiero P (2016) Chem Rev 116:5987

    Article  CAS  Google Scholar 

  19. Shi H, Li X, Haller GL, Gutierrez OY, Lercher JA (2012) J Catal 295:133

    Article  CAS  Google Scholar 

  20. Hansen TW, Delariva AT, Challa SR, Datye AK (2013) Acc Chem Res 46:1720

    Article  CAS  Google Scholar 

  21. Hatanaka M, Takahashi N, Tanabe T, Nagai Y, Dohmae K, Aoki Y, Yoshida T, Shinjoh H (2010) Appl Catal B 99:336

    Article  CAS  Google Scholar 

  22. Dvorak F, Camellone MF, Tovt A, Tran N-D, Negreiros FR, Vorokhta M, Skala T, Matolinova I, Myslivecek J, Matolin V, Fabris S (2016) Nature Commun 7:10801

    Article  CAS  Google Scholar 

  23. Parres-Esclapez S, Illan-Gomez MJ, Salinas-Martinez de Lecea C, Bueno-Lopez A (2010) Appl Catal B 96:370

    Article  CAS  Google Scholar 

  24. Esteves P, Wu Y, Dujardin C, Dongare MK, Granger P (2011) Catal Today 176:453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

IVY acknowledges Technical University of Crete for partial financial support. MJT acknowledges Aston University for a PhD scholarship. GK acknowledges funding from the Royal Society and EPSRC. The authors would like to thank Dr C.M.A. Parlett and Dr M.A. Isaacs for their kind assistance with the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yentekakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yentekakis, I.V., Goula, G., Kampouri, S. et al. Ir-Catalysed Nitrous oxide (N2O) Decomposition: Effect of Ir Particle Size and Metal–Support Interactions. Catal Lett 148, 341–347 (2018). https://doi.org/10.1007/s10562-017-2233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2233-z

Keywords

Navigation