Skip to main content
Log in

Thermal Analysis and Calorimetric Study of the Combustion of Hydrolytic Wood Lignin and Products of Its Pyrolysis

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

Thermal decomposition of hydrolyzed lignin is studied in the 300-700εC range in an inert gas atmosphere. The yields of solid, liquid, and gaseous decomposition products are determined. It is demonstrated by combustion calorimetry that the carbonaceous residue of lignin pyrolysis has the highest calorific value. The calorific value of the carbonaceous residue of pyrolysis resin is higher than that of the original lignin. It is shown by thermogravimetry and differential scanning calorimetry with mass spectrometric detection of gases that lignin and its thermal decomposition products could undergo thermolysis with formation of various volatile compounds. Thermal decomposition starts at roughly the same temperature and is 320εC. The loss of sample mass increases in the following sequence: carbonaceous residue < lignin < liquid fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. V. Yu. Belyaev, Author’s Abstract of Chemical Sciences Candidate Dissertation. AGTU, Arkhangelsk (1998).

  2. B. N. Kuznetsov, S. A. Kuznetsova, and V. E. Taraban’ko, Ros. Khim. Zh., 48, 4-20 (2004).

    CAS  Google Scholar 

  3. M. Balat, Energy Exploration and Exploitation, 25, 195-218 (2007).

    Article  CAS  Google Scholar 

  4. C. G. Boeriu, D. Bravo, R. J. A. Gosselink, et al, Industrial Crops and Products, 20, 205-218 (2004).

    Article  CAS  Google Scholar 

  5. V. V. Simonova, T. G. Shendrik, and B. N. Kuznetsov, Zh. Sib. Fed. Univ. Ser. “Khimiya,” No. 4, 340-353 (2010).

  6. I. V. Uvarov and L. V. Gordon, Wood Resins [in Russian], Goslesbumizdat, Moscow (1962).

    Google Scholar 

  7. D. Ferdous, Energy & Fuels, 16, 1405-1412 (2002).

    Article  CAS  Google Scholar 

  8. M. Brebu and C. Vasile, Cellulose Chemistry and Technology, 44, 353-363 (2010).

    CAS  Google Scholar 

  9. GOST 15815–83. Technological Chips. Specifications.

  10. A. A. Makarov, A. N. Grachev, and I. G. Zemskov, Vestn. Kazan. Tekhnol. Univ., 14, 442-444 (2014).

    Google Scholar 

  11. S. Yakimova, M. A. Ziganshin, V. A. Sidorov, et al., J. Physical Chemistry B, 112, 15569-15575.

  12. A. V. Gerasimov, M. A. Ziganshin, A. E. Vandyukov, et al., J. Colloid and Interface Science, 360, 204-210 (2011).

    Article  CAS  Google Scholar 

  13. A. T. Gooty, D. Li, F. Berruti, et al., J. Analytical and Applied Pyrolysis, 106, 33-40 (2014).

    Article  Google Scholar 

  14. “Heat of combustion,” in: Physical Encyclopedia (Ed.: A. M. Prokhorov). Sovetskaya Entsiklopediya, 5, 81 (1999).

Download references

This research was subsidized by Kazan (Volga Region) Federal University to elevate its competitive standing among the world’s leading scientific-educational centers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Varfolomeev.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 1, pp. 83 – 86, January– February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeev, M.A., Grachev, A.N., Makarov, A.A. et al. Thermal Analysis and Calorimetric Study of the Combustion of Hydrolytic Wood Lignin and Products of Its Pyrolysis. Chem Technol Fuels Oils 51, 140–145 (2015). https://doi.org/10.1007/s10553-015-0586-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-015-0586-9

Keywords

Navigation