Skip to main content
Log in

A multistage-dialysis microdevice for extraction of cryoprotectants

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, we present a multistage-dialysis microdevice (MDM) for extraction of cryoprotectants (CPAs) from a CPA-laden cell suspension. We confirmed the functions of the key designs of the MDM using a fluorescence solution, we assessed the performance of the MDM by using the MDM to unload glycerin from glycerin-loaded swine erythrocytes, and we investigated the effects of the cell suspension flow rate, glycerin concentration, cell density, and membrane pore size on the clearance efficiency of glycerin (CG), the survival rate of cells (SC), and the recovery rate of cells (RC). Under the designed conditions, CG, SC, and RC reached ~60%, ~90%, and ~70%, respectively. In addition, a high flow rate causes high SC and RC but a low CG. For a low glycerin concentration, CG, SC, and RC are all high. If a low cell density or a large pore membrane is used, CG is high, whereas both SC and RC are low. This work provides insight into the development of microfluidic devices for the inline extraction of cryoprotectants from a small volume of cryopreserved cells prior to the use of the cells in lab-on-a-chip applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • K.A. Almansoori, V. Prasad, J.F. Forbes, G.K. Law, L.E. McGann, J.A.W. Elliott, N.M. Jomha, Cryobiology 64, 185 (2012)

    Article  Google Scholar 

  • R.B. Chandran, J. Reinhart, E. Lemke and A. Hubel, Biomicrofluidics. 6 (2012)

  • K. Devine, S.L. Mumford, K.N. Goldman, B. Hodes-Wertz, S. Druckenmiller, A.M. Propst, N. Noyes, Fertil Steril 103, 1446 (2015)

    Article  Google Scholar 

  • W. Ding, J. Yu, E. Woods, S. Heimfeld, D. Gao, J Membr Sci 288, 85 (2007)

    Article  Google Scholar 

  • W. Ding, S. Sun, C. Liu, S. Heimfeld, D. Gao, J Membr Sci 360, 17 (2010)

    Article  Google Scholar 

  • R. Dou, R.E. Saunders, L. Mohamet, C.M. Ward, B. Derby, Lab Chip 15, 3503 (2015)

    Article  Google Scholar 

  • T.A. Duncombe, A.M. Tentori, A.E. Herr, Nat Rev Mol Cell Biol 16, 554 (2015)

    Article  Google Scholar 

  • E. Fitzpatrick, S. Xu, J. Datta, J. Cintolo, B. Czerniecki, Cytotherapy 17, S22 (2015)

    Article  Google Scholar 

  • K.K. Fleming, E.K. Longmire, A. Hubei, J Biomech Eng-T Asme 129, 703 (2007)

    Google Scholar 

  • K.K.F. Glass, E.K. Longmire, A. Hubel, Int J Heat Mass Transf 51, 5749 (2008)

    Article  Google Scholar 

  • O. Gryshkov, D. Pogozhykh, N. Hofmann, O. Pogozhykh, T. Mueller and B. Glasmacher, Plos One. 9 (2014)

  • J. Hanna, A. Hubel, E. Lemke, Biotechnol Bioeng 109, 2316 (2012)

    Article  Google Scholar 

  • Y.S. Heo, H.J. Lee, B.A. Hassell, D. Irimia, T.L. Toth, H. Elmoazzen, M. Toner, Lab Chip 11, 3530 (2011)

    Article  Google Scholar 

  • C. Herzog, E. Poehler, A.J. Peretzki, S.M. Borisov, D. Aigner, T. Mayr, S. Nagl, Lab Chip 16, 1565 (2016)

    Article  Google Scholar 

  • C.C. Hong, J.W. Choi, C.H. Ahn, Lab Chip 4, 109 (2004)

    Article  Google Scholar 

  • S.M. Hosseini, M.H. Nasr-Esfahani, Reprod BioMed Online 32, 377 (2016)

    Article  Google Scholar 

  • R. Hoyt, J. Szer, A. Grigg, Bone Marrow Transplant 25, 1285 (2000)

    Article  Google Scholar 

  • K. Iwai, K.C. Shih, X. Lin, T.A. Brubaker, R.D. Sochol, L. Lin, Lab Chip 14, 3790 (2014)

    Article  Google Scholar 

  • Y. Kang, L. Zou, B. Qiu, X. Liang, S. Sun, D. Gao, W. Ding, Biomed Microdevices 19, 15 (2017)

    Article  Google Scholar 

  • L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Lab Chip 6, 394 (2006)

    Article  Google Scholar 

  • C. Kim, K. Lee, J.H. Kim, K.S. Shin, K.J. Lee, T.S. Kim, J.Y. Kang, Lab Chip 8, 473 (2008)

    Article  Google Scholar 

  • S. Kou, D. Cheng, F. Sun, I.M. Hsing, Lab Chip 16, 432 (2016)

    Article  Google Scholar 

  • K. Lee, C. Kim, B. Ahn, R. Panchapakesan, A.R. Full, L. Nordee, J.Y. Kang, K.W. Oh, Lab Chip 9, 709 (2009)

    Article  Google Scholar 

  • R. Liu, N. Wang, F. Kamili, A.F. Sarioglu, Lab Chip 16, 1350 (2016)

    Article  Google Scholar 

  • R.E. Lusianti and A.Z. Higgins, Biomicrofluidics, 8 (2014)

  • R.E. Lusianti, J.D. Benson, J.P. Acker, A.Z. Higgins, Biotechnol Prog 29, 609 (2013)

    Article  Google Scholar 

  • C. Mata, E.K. Longmire, D.H. McKenna, K.K. Glass, A. Hubel, Microfluid Nanofluid 5, 529 (2008)

    Article  Google Scholar 

  • C. Mata, E. Longmire, D. McKenna, K. Glass, A. Hubel, Microfluid Nanofluid 8, 457 (2010)

    Article  Google Scholar 

  • T. Miki, W. Wong, E. Zhou, A. Gonzalez, I. Garcia and B.H. Grubbs, Stem Cell Res Ther. 7 (2016)

  • S. Mitragotri, J Control Release 86, 69 (2003)

    Article  Google Scholar 

  • C.G. Perotti, C. Del Fante, G. Viarengo, P. Papa, L. Rocchi, Transfusion 44, 900 (2004)

    Article  Google Scholar 

  • G.J. Ruiz-Delgado, C. Mancias-Guerra, E.L. Tamez-Gomez, L.N. Rodriguez-Romo, A. Lopez-Otero, A. Hernandez-Arizpe, D. Gomez-Almaguer, G.J. Ruiz-Arguelles, Acta Haematol 122, 1 (2009)

    Article  Google Scholar 

  • T. Scherr, S. Pursley, W.T. Monroe, K. Nandakumar, Biomicrofluidics 7 (2013)

  • T. Scherr, S. Pursley, W.T. Monroe, K. Nandakumar, Int J Heat Mass Transf 78, 1284 (2014)

    Article  Google Scholar 

  • T. Scherr, G.L. Knapp, A. Guitreau, D.S.-W. Park, T. Tiersch, K. Nandakumar, W.T. Monroe, Biomed Microdevices 17, 65 (2015)

    Article  Google Scholar 

  • J.B. Segur, H.E. Oberstar, Ind Eng Chem Res 43, 2117 (1951)

    Article  Google Scholar 

  • Z. Shu, S. Heimfeld, D. Gao, Bone Marrow Transplant 49, 469 (2014)

    Article  Google Scholar 

  • Y.S. Song, S. Moon, L. Hulli, S.K. Hasan, E. Kayaalp, U. Demirci, Lab Chip 9, 1874 (2009)

    Article  Google Scholar 

  • C.R. Valeri, G. Ragno, L.E. Pivacek, R. Srey, J.R. Hess, L.E. Lippert, F. Mettille, R. Fahie, E.M. O'Neill, I.O. Szymanski, Transfusion 41, 933 (2001)

    Article  Google Scholar 

  • L. Yu, Z.Z. Shi, Lab Chip 15, 1642 (2015)

    Article  Google Scholar 

  • X.M. Zhou, Z. Liu, Z.Q. Shu, W.P. Ding, P.A. Du, J. Chung, C. Liu, S. Heimfeld and D.Y. Gao, J Biomech Eng-T Asme. 133, (2011)

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Nos.: 81571768, 81627806) and the Fundamental Research Funds for the Central Universities (Grant Nos.: WK6030000054, WK3490000001). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Ding.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Li, S., Kang, Y. et al. A multistage-dialysis microdevice for extraction of cryoprotectants. Biomed Microdevices 19, 30 (2017). https://doi.org/10.1007/s10544-017-0174-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0174-3

Keywords

Navigation