Skip to main content
Log in

3D tissue culture substrates produced by microthermoforming of pre-processed polymer films

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We describe a new technology based on thermoforming as a microfabrication process. It significantly enhances the tailoring of polymers for three dimensional tissue engineering purposes since for the first time highly resolved surface and bulk modifications prior to a microstructuring process can be realised. In contrast to typical micro moulding techniques, the melting phase is avoided and thus allows the forming of pre-processed polymer films. The polymer is formed in a thermoelastic state without loss of material coherence. Therefore, previously generated modifications can be preserved. To prove the feasibility of our newly developed technique, so called SMART = Substrate Modification And Replication by Thermoforming, polymer films treated by various polymer modification methods, like UV-based patterned films, and films modified by the bombardment with energetic heavy ions, were post-processed by microthermoforming. The preservation of locally applied specific surface and bulk features was demonstrated e.g. by the selective adhesion of cells to patterned microcavity walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Biotechnol Prog 14, 356 (1998).

    Article  Google Scholar 

  • S.-M. Chia, K.W. Leong, J. Li, X. Xu, K. Zeng, P.-N. Er, S. Gao, and H. Yu, Tissue Eng 6, 481 (2000).

    Article  Google Scholar 

  • T.A. Desai, J. Deutsch, D. Motlagh, W. Tan, and B. Russell, Biomed Microdev 2, 123 (1999).

    Article  Google Scholar 

  • J.-L. Dewez, J.-B. Lhoest, E. Detrait, V. Berger, C.C. Dupont-Gillain, L.-M. Vincent, Y.-J. Schneider, P. Bertrand, and P.G. Rouxhet, Biomaterials 19, 1441 (1998).

    Article  Google Scholar 

  • E. Eschbach, S.S. Chatterjee, M. Nöldner, E. Gottwald, H. Dertinger, K.-F. Weibezahn, and G. Knedlitschek, Journal of Cellular Biochemistry 95, 243 (2005).

    Article  Google Scholar 

  • R.L. Fleischer, P.B. Price, and R.M. Walker, Nuclear tracks in solids (University of California Press, Berkeley, 1975).

    Google Scholar 

  • K. Funatsu, H. Ijima, K. Nakazawa, Y.-i. Yamashita, M. Shimada, and K. Sugimachi, Artificial Organs 25, 194 (2001).

    Article  Google Scholar 

  • S. Giselbrecht, L. Eichhorn, T. Gietzelt, E. Gottwald, A.E. Guber, W.K. Schomburg, R. Truckenmüller, and K.-F. Weibezahn (VDE, München, 2003), 147.

  • S. Giselbrecht, T. Gietzelt, A.E. Guber, E. Gottwald, C. Trautmann, R. Truckenmüller, and K.-F. Weibezahn, IEE Proc-Nanobiotechnol 151, 151 (2004).

    Article  Google Scholar 

  • V. Hasirci, F. Berthiaume, S.P. Bondre, J.D. Gresser, D.J. Trantolo, M. Toner, and D.L. Wise, Tissue Eng 7, 385 (2001).

    Article  Google Scholar 

  • M. Heckele and W.K. Schomburg, J Micromechan Microeng 14, R1 (2004).

    Article  Google Scholar 

  • G. Knedlitschek, F. Schneider, E. Gottwald, T. Schaller, E. Eschbach, and K.F. Weibezahn, J Biomech Eng 121, 35 (1999).

    Google Scholar 

  • L.A. Kunz-Schughart, J.P. Freyer, F. Hofstaedter, and R. Ebner, J Biomol Screen 9, 273 (2004).

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Biomed Microdev 5, 109 (2003).

    Article  Google Scholar 

  • Y. Martelé, K. Callewaert, K. Naessens, P.V. Daele, R. Baets, and E. Schacht, Mater. Sci. Eng. C 23, 341 (2003).

    Article  Google Scholar 

  • M. Mrksich, and G.M. Whitesides, Annu Rev Biophys Biomol Struct 25, 55 (1996).

    Article  Google Scholar 

  • C.S. Ranucci, A. Kumar, S.P. Batra, and P.V. Moghe, Biomaterials 21, 783 (2000).

    Article  Google Scholar 

  • C.E. Semino, J.R. Merok, G.G. Crane, G. Panagiotakos, and S. Zhang, Differentiation 71, 262 (2003).

    Article  Google Scholar 

  • J.D. Snyder, and T.A. Desai, J Biomater Sci Polym Ed 12, 921 (2001).

    Article  Google Scholar 

  • R. Spohr, Ion Tracks and Microtechnology (Vieweg, Braunschweig, 1990).

    Google Scholar 

  • T. Takezawa, Biomaterials 24, 2267 (2003).

    Article  Google Scholar 

  • W. Tan and T.A. Desai, Biomed Microdev 5, 235 (2003).

    Article  Google Scholar 

  • R. Truckenmüller, S. Giselbrecht, T. Schaller, and W.K. Schomburg, (VDE, München, 2003), 315.

  • R. Truckenmüller, Z. Rummler, T. Schaller, and W.K. Schomburg, (Cork, 2001), 39.

  • K.F. Weibezahn, G. Knedlitschek, W. Bier, and T. Schaller, MICRO SYSTEM Technologies 94 (vde-Verlag gmbh, Berlin - Offenbach, 1994), 873.

    Google Scholar 

  • A. Welle, J Biomater Sci Polym Ed 15, 357 (2003).

    Article  Google Scholar 

  • A. Welle and E. Gottwald, Biomed Microdev 4, 33 (2002).

    Article  Google Scholar 

  • A. Welle, E. Gottwald, K.-F. Weibezahn, and H. Dertinger, Mat Res Soc Symp Proc (Materials Research Society, Boston, 2002), p. 175.

    Google Scholar 

  • N. Yamauchi, O. Yamada, T. Takahashi, K. Imai, T. Sato, A. Ito, and K. Hashizume, Placenta 24, 258 (2003).

    Article  Google Scholar 

  • C. Yeung and D. Leckband, Langmuir 13, 6746 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giselbrecht, S., Gietzelt, T., Gottwald, E. et al. 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films. Biomed Microdevices 8, 191–199 (2006). https://doi.org/10.1007/s10544-006-8174-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-8174-8

Keywords

Navigation