Skip to main content

Advertisement

Log in

Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

During summer drought, Mediterranean fluvial networks are transformed into highly heterogeneous landscapes characterized by different environments (i.e., running and impounded waters, isolated river pools and dry beds). This hydrological setting defines novel biogeochemically active areas that could potentially increase the rates of carbon emissions from the fluvial network to the atmosphere. Using chamber methods, we aimed to identify hot spots for carbon dioxide (CO2) and methane (CH4) emissions from two typical Mediterranean fluvial networks during summer drought. The CO2 efflux from dry beds (mean ± SE = 209 ± 10 mmol CO2 m−2 d−1) was comparable to that from running waters (120 ± 33 mmol m−2 d−1) and significantly higher than from impounded waters (36.6 ± 8.5 mmol m−2 d−1) and isolated pools (17.2 ± 0.9 mmol m−2 d−1). In contrast, the CH4 efflux did not significantly differ among environments, although the CH4 efflux was notable in some impounded waters (13.9 ± 10.1 mmol CH4 m−2 d−1) and almost negligible in the remaining environments (mean <0.3 mmol m−2 d−1). Diffusion was the only mechanism driving CO2 efflux in all environments and was most likely responsible for CH4 efflux in running waters, isolated pools and dry beds. In contrast, the CH4 efflux in impounded waters was primarily ebullition-based. Using a simple heuristic approach to simulate potential changes in carbon emissions from Mediterranean fluvial networks under future hydrological scenarios, we show that an extreme drying out (i.e., a four-fold increase of the surface area of dry beds) would double the CO2 efflux from the fluvial network. Correspondingly, an extreme transformation of running waters into impounded waters (i.e., a twofold increase of the surface area of impounded waters) would triple the CH4 efflux. Thus, carbon emissions from dry beds and impounded waters should be explicitly considered in carbon assessments of fluvial networks, particularly under predicted global change scenarios, which are expected to increase the spatial and temporal extent of these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril G (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:1–16. doi:10.1029/2005GB002457

    Article  Google Scholar 

  • Acuña V, Tockner K (2010) The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Chang Biol 16:2638–2650. doi:10.1111/j.1365-2486.2010.02170.x

    Google Scholar 

  • Acuña V, Datry T, Marshall J et al (2014) Why should we care about temporary waterways? Science 343:1080–1082. doi:10.1126/science.1246666

    Article  Google Scholar 

  • Alin SR, Rasera MDFFL, Salimon CI et al (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res 116:G01009. doi:10.1029/2010JG001398

    Google Scholar 

  • Angert A, Yakir D, Rodeghiero M et al (2014) Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosciences Discuss 11:12039–12068. doi:10.5194/bgd-11-12039-2014

    Article  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558. doi:10.1038/nature05038

    Article  Google Scholar 

  • Bade DL (2009) Gas exchange across the air-water interface. In: Gene EL (ed) Encyclopedia of inland waters. Academic Press, Oxford, pp 70–78

    Chapter  Google Scholar 

  • Bastien J, Demarty M (2013) Spatio-temporal variation of gross CO2 and CH4 diffusive emissions from Australian reservoirs and natural aquatic ecosystems, and estimation of net reservoir emissions. Lakes Reserv Res Manag 18:115–127. doi:10.1111/lre.12028

    Article  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik LJ (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:1–12. doi:10.1029/2004GB002238

    Article  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA et al (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50–57. doi:10.1126/science.1196808

    Article  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA et al (2009a) The boundless carbon cycle. Nat Geosci 2:598–600. doi:10.1038/ngeo618

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S et al (2009b) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 2:95–100. doi:10.1038/ngeo602

    Article  Google Scholar 

  • Baulch HM, Dillon PJ, Maranger R, Schiff SL (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res Biogeosciences 116:1–15. doi:10.1029/2011JG001656

    Article  Google Scholar 

  • Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophys Res Biogeosciences 117:1–13. doi:10.1029/2011JG001794

    Article  Google Scholar 

  • Belger L, Forsberg BR, Melack JM (2010) Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry 105:171–183. doi:10.1007/s10533-010-9536-0

    Article  Google Scholar 

  • Benstead JP, Leigh DS (2012) An expanded role for river networks. Nat Geosci 5:678–679. doi:10.1038/ngeo1593

    Article  Google Scholar 

  • Bernal S, von Schiller D, Sabater F, Martí E (2013) Hydrological extremes modulate nutrient dynamics in mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42. doi:10.1007/s10750-012-1246-2

    Article  Google Scholar 

  • Bonada N, Resh VH (2013) Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems. Hydrobiologia 719:1–29. doi:10.1007/s10750-013-1634-2

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915–1926. doi:10.5194/bg-7-1915-2010

    Article  Google Scholar 

  • Campbell C, Chapman S (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial. Appl Environ Microbiol 69:3593–3599. doi:10.1128/AEM.69.6.3593

    Article  Google Scholar 

  • Campeau A, Del Giorgio PA (2014) Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Chang Biol 20:1–14. doi:10.1111/gcb.12479

    Article  Google Scholar 

  • Campeau A, Lapierre J (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Glob Biogeochem Cycles 28:1–13. doi:10.1002/2013GB004685

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi:10.1007/s10021-006-9013-8

    Article  Google Scholar 

  • Cole JJ, Bade DL, Bastviken D et al (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr Methods 8:285–293. doi:10.4319/lom.2010.8.285

    Article  Google Scholar 

  • Crawford JT, Stanley EH, Spawn SA et al (2014) Ebullitive methane emissions from oxygenated wetland streams. Global Chang Biol 20:3408–3422. doi:10.1111/gcb.12614

    Article  Google Scholar 

  • Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017. doi:10.4319/lo.2003.48.3.1010

    Article  Google Scholar 

  • Dahm CN, Baker MA, Moore DI, Thibault JR (2003) Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshw Biol 48:1219–1231. doi:10.1046/j.1365-2427.2003.01082.x

    Article  Google Scholar 

  • Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235. doi:10.1093/biosci/bit027

    Article  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other method. J Sediment Petrol 44:242–248. doi:10.1306/74D729D2-2B21-11D7-8648000102C1865D

    Google Scholar 

  • Del Sontro T (2011) Quantifying methane emissions from reservoirs: from Basin-scale to discrete analyses with a focus on ebullition dynamics. PhD dissertation, Eidgenössische Technische Hochschule ETH Zürich, Zürich. doi: http://dx.doi.org/10.3929/ethz-a-006725547

  • Del Sontro T, McGinnis DF, Sobek S et al (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425. doi:10.1021/es9031369

    Article  Google Scholar 

  • Demars BOL, Manson JR (2013) Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review. Water Res 47:1–15. doi:10.1016/j.watres.2012.09.054

    Article  Google Scholar 

  • Donelan MA (1990) Air–sea interaction. In: LeMehaute B, Hanes D (eds) The sea: ocean engineering science. Wiley, New York, pp 239–292

    Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ et al (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem Cycles 22:GB1018. doi:10.1029/2006GB002854

    Article  Google Scholar 

  • Fearnside PM, Pueyo S (2012) Greenhouse-gas emissions from tropical dams. Nat Clim Chang 2:382–384. doi:10.1038/nclimate1540

    Article  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462. doi:10.4319/lo.2010.55.6.2452

    Article  Google Scholar 

  • Forzieri G, Feyen L, Rojas R et al (2014) Ensemble projections of future streamflow droughts in Europe. Hydrol Earth Syst Sci 18:85–108. doi:10.5194/hess-18-85-2014

    Article  Google Scholar 

  • Frankignoulle M (1988) Field measurements of air-sea CO2 exchange. Limnol Ocean 33:313–322

    Article  Google Scholar 

  • Fujikawa T, Miyazaki T (2005) Effects of bulk density and soil type on the gas diffusion coefficient in repacked and undisturbed soils. Soil Sci 170:892–901. doi:10.1097/01.ss.0000196771.53574.79

    Article  Google Scholar 

  • Gallo EL, Lohse KA, Ferlin CM et al (2014) Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121:189–207. doi:10.1007/s10533-013-9927-0

    Article  Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM et al (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105:121–139. doi:10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81. doi:10.1146/annurev.ecolsys.30.1.51

    Article  Google Scholar 

  • Guérin F, Abril G, Serça D et al (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Mar Syst 66:161–172. doi:10.1016/j.jmarsys.2006.03.019

    Article  Google Scholar 

  • Halbedel S, Koschorreck M (2013) Regulation of CO2 emissions from temperate streams and reservoirs. Biogeosciences 10:7539–7551. doi:10.5194/bg-10-7539-2013

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857. doi:10.4319/lo.2001.46.4.0847

    Article  Google Scholar 

  • Hornberger GM, Kelly MG (1975) Atmospheric reaeration in a river using productivity analysis. J Environ Eng Div ASCE 101:729–739

    Google Scholar 

  • Howard D, Howard P (1993) Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem 25:1537–1546. doi:10.1016/0038-0717(93)90008-Y

    Article  Google Scholar 

  • IPCC 2013: Climate Change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on climate change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge and New York, 1535 pp

  • Jähne B, Münnich K (1987) On the parameters influencing air-water gas exchange. J Geophys Res Ocean 92:1937–1942. doi:10.1029/JC092iC02p01937

    Article  Google Scholar 

  • Jonsson A, Algesten G, Bergström AK et al (2007) Integrating aquatic carbon fluxes in a boreal catchment carbon budget. J Hydrol 334:141–150. doi:10.1016/j.jhydrol.2006.10.003

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251(4991):298–301. doi:10.1126/science.251.4991.298

    Article  Google Scholar 

  • Koschorreck M, Darwich A (2003) Nitrogen dynamics in seasonally flooded soils in the Amazon floodplain. Wetl Ecol Manag 11:317–330. doi:10.1023/B:WETL.0000005536.39074.72

    Article  Google Scholar 

  • Lake PS (2011) Drought and aquatic ecosystems: effects and responses. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738. doi:10.1111/j.1365-2427.2009.02322.x

    Article  Google Scholar 

  • Laurion I, Vincent W, MacIntyre S (2010) Variability in greenhouse gas emissions from permafrost thaw ponds. Limnol Oceanogr 55:115–133. doi:10.4319/lo.2010.55.1.0115

    Article  Google Scholar 

  • López P, Marcé R, Armengol J (2011) Net heterotrophy and CO2 evasion from a productive calcareous reservoir: adding complexity to the metabolism-CO2 evasion issue. J Geophys Res Biogeosciences 116:G02021. doi:10.1029/2010JG001614

    Article  Google Scholar 

  • Lundin EJ, Giesler R, Persson A et al (2013) Integrating carbon emissions from lakes and streams in a subarctic catchment. J Geophys Res Biogeosciences 118:1–8. doi:10.1002/jgrg.20092

    Google Scholar 

  • Luo Y, Zhou X (2010) Soil respiration and the environment. Elsevier Academy Press, Amsterdam

    Google Scholar 

  • Maeck A, Del Sontro T, McGinnis DF et al (2013) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137. doi:10.1021/es4003907

    Google Scholar 

  • McGinnis DF, Kirillin G, Tang KW et al (2015) Enhancing surface methane fluxes from an Oligotrophic lake: exploring the microbubble hypothesis. Environ Sci Technol 49:873–880. doi:10.1021/es503385d

    Article  Google Scholar 

  • McIntyre RES, Adams MA, Ford DJ, Grierson PF (2009) Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream. Soil Biol Biochem 41:92–101. doi:10.1016/j.soilbio.2008.09.021

    Article  Google Scholar 

  • Meier JA, Jewell JS, Brennen CE, Imberger J (2011) Bubbles emerging from a submerged granular bed. J Fluid Mech 666:189–203. doi:10.1017/S002211201000443X

    Article  Google Scholar 

  • Meybeck M, Dürr H, Vörösmarty C (2006) Global coastal segmentation and its river catchment contributors: A new look at land-ocean linkage. Global Biogeochem Cycles 20:GB1S90. doi:10.1029/2005GB002540

    Article  Google Scholar 

  • Millero F (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–677. doi:10.1016/0016-7037(94)00354-O

    Article  Google Scholar 

  • Milliman JD, Farnsworth KL, Jones PD et al (2008) Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob Planet Chang 62:187–194. doi:10.1016/j.gloplacha.2008.03.001

    Article  Google Scholar 

  • Mitchell AM, Baldwin DS (1999) The effects of sediment desiccation on the potential for nitrification, denitrification, and methanogenesis in an Australian reservoir. Hydrobiologia 392:3–11. doi:10.1023/A:1003589805914

    Article  Google Scholar 

  • Morales-Pineda M, Cózar A, Laiz I et al (2014) Daily, biweekly, and seasonal temporal scales of pCO2 variability in two stratified Mediterranean reservoirs. J Geophys Res Biogeosciences 119:1–12. doi:10.1002/2013JG002317

    Article  Google Scholar 

  • Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus A 34:490–499. doi:10.3402/tellusa.v34i5.10834

    Article  Google Scholar 

  • Nilsson C, Reidy C, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308:405–408. doi:10.1126/science.1107887

    Article  Google Scholar 

  • Obrador B, Pretus JL (2012) Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiologia 699:35–57. doi:10.1007/s10750-012-1152-7

    Article  Google Scholar 

  • Oksanen, J, Blanchet FG, Kindt R et al. (2013). Vegan: community ecology package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan

  • Pavón D (2010) Desarrollo y decadencia hidroeléctrica en los pequeños ríos del litoral mediterráneo catalán. El caso de las cuencas del Fluvià y de la Muga. Revista de Historia Industrial 42:43–87

    Google Scholar 

  • Pohlon E, Ochoa Fandino A, Marxsen J (2013) Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS One 8:e83365. doi:10.1371/journal.pone.0083365

    Article  Google Scholar 

  • Prairie Y, Del Giorgio PA (2013) A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inl Waters 3:311–320. doi:10.5268/IW-3.3.542

    Article  Google Scholar 

  • R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN:3-900051-07-0, http://www.R-project.org/

  • Raich J, Schlesinger W (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99. doi:10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  • Raich J, Potter C, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Global Chang Biol 8:800–812. doi:10.3334/CDIAC/lue.ndp081

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi:10.1038/nature12760

    Article  Google Scholar 

  • Rey A (2015) Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Chang Biol 21:1752–1761. doi:10.1111/gcb.12821

    Article  Google Scholar 

  • Sabater S (2008) Alterations of the global water cycle and their effects on river structure, function and services. Freshw Rev 1:75–88. doi:10.1608/FRJ-1.1.5

    Article  Google Scholar 

  • Sobek S, Algesten G (2003) The catchment and climate regulation of pCO2 in boreal lakes. Global Chang Biol 9:630–641. doi:10.1046/j.1365-2486.2003.00619.x

    Article  Google Scholar 

  • Sobek S, Zurbrügg R, Ostrovsky I (2011) The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquat Sci 73:355–364. doi:10.1007/s00027-011-0183-x

    Article  Google Scholar 

  • Sobek S, Del Sontro T, Wongfun N, Wehrli B (2012) Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39:2–5. doi:10.1029/2011GL050144

    Google Scholar 

  • Steward AL, von Schiller D, Tockner K et al (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–209. doi:10.1890/110136

    Article  Google Scholar 

  • Striegl RG, Dornblaser MM, McDonald CP et al (2012) Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem Cycles 26:GB0E05. doi:10.1029/2012GB004306

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, Hoboken

  • Tang KW, McGinnis DG, Frindte K et al (2014) Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol Oceanogr 59:275–284. doi:10.4319/lo.2014.59.1.0275

    Article  Google Scholar 

  • Teodoru CR, Prairie YT, Del Giorgio PA (2010) Spatial Heterogeneity of Surface CO2 Fluxes in a newly created eastmain-1 reservoir in Northern Quebec, Canada. Ecosystems 14:28–46. doi:10.1007/s10021-010-9393-7

    Article  Google Scholar 

  • Timoner X, Acuña V, Frampton L et al (2014) Biofilm functional responses to the rehydration of a dry intermittent stream. Hydrobiologia 727:185–195. doi:10.1007/s10750-013-1802-4

    Article  Google Scholar 

  • Tockner K, Uehlinger U, Robinson CT (2009) Rivers of Europe. Academic Press, San Diego

    Google Scholar 

  • Tooth S (2000) Process, form and change in dry land rivers: a review of recent research. Earth Sci Rev 51:67–107. doi:10.1016/S0012-8252(00)00014-3

    Article  Google Scholar 

  • Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–1732. doi:10.4319/lo.2010.55.4.1723

    Article  Google Scholar 

  • Vazquez E, Amalfitano S, Fazi S, Butturini A (2010) Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102:59–72. doi:10.1007/s10533-010-9421-x

    Article  Google Scholar 

  • Von Schiller D, Acuña V, Graeber D et al (2011) Contraction, fragmentation and expansion dynamics determine nutrient availability in a Mediterranean forest stream. Aquat Sci 73:485–497. doi:10.1007/s00027-011-0195-6

    Article  Google Scholar 

  • Von Schiller D, Marcé R, Obrador B et al (2014) Carbon dioxide emissions from dry watercourses. Inland waters 4:377–382. doi:10.5268/IW-4.4.746

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res Ocean 97:7373–7382. doi:10.1029/92JC00188

    Article  Google Scholar 

  • Weiss R (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215. doi:10.1016/0304-4203(74)90015-2

    Article  Google Scholar 

  • Williams DD (2006) The biology of temporary waters. Oxford University Press, Oxford

    Google Scholar 

  • Xiao S, Liu D, Wang Y et al (2013) Temporal variation of methane flux from Xiangxi Bay of the three gorges reservoir. Sci Rep 3:2500. doi:10.1038/srep02500

    Google Scholar 

  • Xu L, Baldocchi DD, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochem Cycles 18:GB4002. doi:10.1029/2004GB002281

    Google Scholar 

  • Zoppini A, Marxsen J (2011) Importance of extracellular enzymes for biogeochemical processes in temporary river sediments during fluctuating dry-wet Conditions. In: Shukla G, Varma A (eds) Soil enzymology. Springer, Berlin, pp 103–117

    Google Scholar 

Download references

Acknowledgments

All the data used for the results of this paper is available upon request to the corresponding author. We thank P. A. Raymond for providing data of the effective area occupied by dry rivers in our COSCAT region. This research was funded by the Spanish Ministry of Economy and Competitiveness through the projects CGL2011-30474-C02-01 and CGL2014-58760-C3-1-R. Ll. Gómez-Gener and J. P. Casas-Ruiz were additionally supported by FPI predoctoral grants (BES-2012-059743 and BES-2012-059655) and D. von Schiller by a “Juan de la Cierva” postdoctoral grant (JCI-2010-06397). We thank Carmen Gutiérrez, Mertixell Abril and Susanne Halbedel, for the lab and field assistance. We also thank the Scientific and Technical Service Department of the Catalan Institute for Water research (ICRA) for the lab assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lluís Gómez-Gener.

Additional information

Responsible Editor: Jacques C Finlay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Gener, L., Obrador, B., von Schiller, D. et al. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry 125, 409–426 (2015). https://doi.org/10.1007/s10533-015-0139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0139-7

Keywords

Navigation