Skip to main content

Advertisement

Log in

Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation

  • COASTAL LAGOON ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this article, we studied the fluxes of organic and inorganic (DIC) carbon in a coastal lagoon dominated by highly productive macrophyte meadows (Albufera des Grau, Balearic Islands). Seasonal and annual carbon budgets were performed from estimates of whole-system fluxes, and the fate of organic matter production was evaluated through a stable isotope exploration of the food web. The results showed an extremely intense cycling of DIC, with a turnover between 65 and 13 times faster than water turnover. The metabolic fluxes were the main contributors to the seasonal and annual DIC budgets, which were secondarily affected by calcite precipitation, atmospheric exchange and hydrological fluxes. The inorganic carbon dynamics was strongly determined by the seasonal cycle of the meadows. Accordingly the air–water CO2 flux shifted seasonally, and the lagoon was a sink of atmospheric CO2 during the vegetated period and a source during the period without macrophytes. The high macrophytic production played a minor role in the lagoon food web, which apparently relied on phytoplanktonic or allochthonous organic matter. A fast decomposition of macrophytic biomass appeared to be the main destiny of the annual macrophytic production, which was only secondarily buried in the sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alber, M. & I. Valiela, 1994. Production of microbial organic aggregates from macrophyte-derived dissolved organic material. Limnology and Oceanography 39: 37–50.

    Article  CAS  Google Scholar 

  • Bethoux, J., M. El Boukhary, D. Ruiz-Pino, P. Morin & C. Copin-Montégut, 2005. Nutient, oxygen and carbon rations, CO2 sequestration and anthropogenic forcing in the Mediterranean Sea. In Saliot, A. (ed.), The Handbook of Environmental Chemistry, Vol. 5: Part K. The Mediterranean Sea. Springer, Berlin: 67–86.

    Google Scholar 

  • Borges, A., 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries and Coasts 28: 3–27.

    Article  CAS  Google Scholar 

  • Borges, A., B. Delille, L. S. Schiettecatte, F. Gazeau, G. Abril & M. Frankignoulle, 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography 49: 1630–1641.

    Article  CAS  Google Scholar 

  • Borges, A., B. Delille & M. Frankignoulle, 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophysical Research Letters 32: L14601.

    Article  Google Scholar 

  • Borges, A. V., L. S. Schiettecatte, G. Abril, B. Delille & F. Gazeau, 2006. Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 70: 375–387.

    Article  CAS  Google Scholar 

  • Boutton, T., 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine and freshwater environments. In Coleman, D. & B. Fry (eds), Carbon Isotope Techniques. Academic Press, San Diego.

    Google Scholar 

  • Boyce, M. C., P. Lavery, I. J. Bennett & P. Horwitz, 2001. Spatial variation in the δ13C signature of Ruppia megacarpa (Mason) in coastal lagoons of southwestern Australia and its implication for isotopic studies. Aquatic Botany 71: 83–92.

    Article  CAS  Google Scholar 

  • Brylinsky, M., 1977. Release of dissolved organic matter by some marine macrophytes. Marine Biology 39: 213–220.

    Article  Google Scholar 

  • Bucci, J. P., W. J. Showers, S. Rebach, D. DeMaster & B. Genna, 2007. Stable isotope analyses (delta N-15 and delta C-13) of the trophic relationships of Callinectes sapidus in two North Carolina estuaries. Estuaries and Coasts 30: 1049–1059.

    CAS  Google Scholar 

  • Cai, W. J. & M. Dai, 2004. Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping”. Science 306: 1477c.

    Article  Google Scholar 

  • Cai, W. J., L. R. Pomeroy, M. A. Moran & Y. C. Wang, 1999. Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern U.S. Limnology and Oceanography 44: 639–649.

    Article  CAS  Google Scholar 

  • Cloern, J., E. Canuel & D. Harris, 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnology and Oceanography 47: 713–729.

    Article  CAS  Google Scholar 

  • Deegan, L. & R. Garritt, 1997. Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147: 31–47.

    Article  Google Scholar 

  • del Giorgio, P. A. & R. Peters, 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnology and Oceanography 39: 772–787.

    Article  Google Scholar 

  • Delille, B., A. V. Borges & D. Delille, 2009. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science 81: 114–122.

    Article  Google Scholar 

  • Doval, M., F. Pérez & E. Berdalet, 1999. Dissolved and particulate organic carbon and nitrogen in the Northwestern Mediterranean. Deep Sea Research Part I: Oceanographic Research Papers 46: 511–527.

    Article  CAS  Google Scholar 

  • Duarte, C. & J. Cebrián, 1996. The fate of marine autotrophic production. Limnology and Oceanography 41: 1758–1766.

    Article  CAS  Google Scholar 

  • Duarte, C. & Y. Prairie, 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8: 862–870.

    Article  CAS  Google Scholar 

  • Duarte, C., J. Middelburg & N. Caraco, 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8.

    Article  CAS  Google Scholar 

  • Fornós, J., V. Forteza & A. Martínez-Taberner, 1997. Modern polychaete reefs in Western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic Islands. Palaeogeography, Palaeoclimatology, Palaeoecology 128: 175–186.

    Article  Google Scholar 

  • Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert & J. Théate, 1998. Carbon dioxide emission from European estuaries. Science 282: 434–436.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A., D. Hoeinghaus, J. Vieira & K. Winemiller, 2007. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuarine, Coastal and Shelf Science 73: 399–408.

    Article  Google Scholar 

  • Gattuso, J. P., M. Frankignoulle & R. Wollast, 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics 29: 405–434.

    Article  Google Scholar 

  • Gazeau, F., C. M. Duarte, J. P. Gattuso, C. Barrón, N. Navarro, S. Ruiz, Y. T. Prairie, M. Calleja, B. Delille, M. Frankignoulle & A. V. Borges, 2005. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences 2: 43–60.

    Article  CAS  Google Scholar 

  • Hemminga, M. A. & M. A. Mateo, 1996. Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140: 285–298.

    Article  Google Scholar 

  • Hoover, T. E. & D. C. Berkshire, 1969. Effects of hydration in carbon dioxide exchange across an air-water interface. Journal of Geophysical Research 92: 1937–1949.

    Google Scholar 

  • IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 996 pp.

  • Jeffrey, S. & G. Humphrey, 1975. New spectrophotometric equations for determining chlorophyll a, b, c1, and c2 in higher plants, algae and phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Kaldy, J., C. Onuf, P. Eldridge & L. A. Cifuentes, 2002. Carbon budget for a sub-tropical seagrass dominated coastal lagoon: how important are seagrasses to total ecosystem net primary production. Estuaries 25: 528–539.

    Article  CAS  Google Scholar 

  • Kennedy, P., H. Kennedy & S. Papadimitriou, 2005. The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Communications in Mass Spectrometry 19: 1063–1068.

    Article  PubMed  CAS  Google Scholar 

  • Khailov, K. & Z. Burlakova, 1969. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnology and Oceanography 14: 521–527.

    Article  Google Scholar 

  • Kitting, C., B. Fry & M. Morgan, 1984. Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62: 145–149.

    Article  Google Scholar 

  • Klumpp, D., J. Salita-Espinosa & M. Fortes, 1992. The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquatic Botany 43: 327–349.

    Article  Google Scholar 

  • Knoppers, B., 1994. Aquatic primary production in coastal lagoons. In Kjerfve, B. (ed.), Coastal Lagoon Processes. Elsevier, Amsterdam: 243–286.

    Chapter  Google Scholar 

  • Lewis, W. & D. Wallace, 1998. Program Developed for CO2 System Calculations. ORNL/CDIAC-105.

  • López, P., 2003. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics. Estuarine, Coastal and Shelf Science 56: 943–956.

    Article  Google Scholar 

  • López, P., 2004. Composition of porewater and benthic fluxes in the mesohaline Es Grau lagoon (Minorca, Spain) during spring and early summer. Wetlands 24: 796–810.

    Article  Google Scholar 

  • Menéndez, M. & F. A. Comin, 1990. Consumption of macrophytes by invertebrates in Tancada lagoon (NE Spain). Scientia Marina 54: 139–144.

    Google Scholar 

  • Menéndez, M., D. Carlucci, M. Pinna, F. A. Comin & A. Basset, 2003. Effect of nutrients on decomposition of Ruppia cirrhosa in a shallow coastal lagoon. Hydrobiologia 506–509: 729–735.

    Article  Google Scholar 

  • Menéndez, M., O. Hernández, N. Sanmartí & F. A. Comin, 2004. Variability of organic matter processing in a Mediterranean coastal lagoon. International Review of Hydrobiology 89: 476–483.

    Article  Google Scholar 

  • Meybeck, M., 2006. Origins and behaviours of carbon species in world rivers. In Roose, E., R. Lal, C. Feller, B. Barthès & B. Stewart (eds), Soil Erosion and Carbon Dynamics. CRC, Boca Raton: 209–238.

    Google Scholar 

  • Michener, R. & D. Schell, 1994. Stable isotope ratios as tracers in marine aquatic food webs. In Lajtha, K. & R. Michener (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell, Oxford.

    Google Scholar 

  • Middelburg, J. & J. Nieuwenhuize, 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry 60: 217–225.

    Article  CAS  Google Scholar 

  • Middelburg, J., K. Soetaert, P. M. J. Herman, H. T. S. Boschker & C. H. R. Heip, 2004. Burial of nutrient in coastal sediments: the role of primary producers. In Nielsen, S., G. Banta & M. Pedersen (eds), Estuarine Nutrient Cycling: The Influence of Primary Producers. Kluwer, Dordrecht: 217–230.

    Chapter  Google Scholar 

  • Millero, F. J., 1996. Chemical Oceanography. CRC, Boca Raton: 469 pp.

  • Millero, F. J., T. Graham, F. Huang, H. Bustos-Serrano & D. Pierrot, 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100: 80–94.

    Article  CAS  Google Scholar 

  • Mucci, A., 1983. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283: 780–799.

    Article  CAS  Google Scholar 

  • Obrador, B., 2009. Environmental shaping and carbon cycling in a macrophyte-dominated coastal lagoon. PhD Thesis, University of Barcelona, Barcelona: 215 pp.

  • Obrador, B. & J. L. Pretus, 2008. Light regime and components of turbidity in a Mediterranean coastal lagoon. Estuarine, Coastal and Shelf Science 77: 123–133.

    Article  Google Scholar 

  • Obrador, B. & J. L. Pretus, 2010. Spatiotemporal dynamics of submerged macrophytes in a Mediterranean coastal lagoon. Estuarine, Coastal and Shelf Science 87: 145–155.

    Article  CAS  Google Scholar 

  • Obrador, B., J. L. Pretus & M. Menéndez, 2007. Spatial distribution and biomass of aquatic rooted macrophytes and their relevance in the metabolism of a Mediterranean coastal lagoon. Scientia Marina 71: 57–64.

    Article  CAS  Google Scholar 

  • Obrador, B., E. Moreno-Ostos & J. L. Pretus, 2008. A dynamic model to simulate water level and salinity in a Mediterranean coastal lagoon. Estuaries and Coasts 31: 1117–1129.

    Article  Google Scholar 

  • Penhale, P. & W. Smith, 1977. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnology and Oceanography 22: 400–407.

    Article  CAS  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Pretus, J. L., 1989. Limnología de la Albufera de Menorca (Menorca, España). Limnetica 5: 69–81.

    Google Scholar 

  • Raymond, P. & J. Cole, 2001. Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries and Coasts 24: 312–317.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 384 pp.

  • Robertson, M., A. Mills & J. Zieman, 1982. Microbial synthesis of detritus-like particulates from dissolved organic carbon released by tropical seagrasses. Marine Ecology Progress Series 7: 279–285.

    Article  Google Scholar 

  • Smith, S. V., 1981. Marine macrophytes as a global carbon sink. Science 211: 838–840.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. V. & J. T. Hollibaugh, 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31: 75–89.

    Article  Google Scholar 

  • Smith, S. V. & J. T. Hollibaugh, 1997. Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecological Monographs 67: 509–533.

    Article  Google Scholar 

  • Stephenson, R., F. Tan & K. Mann, 1984. Stable carbon isotope variability in marine macrophytes and its implications for food web studies. Marine Biology 81: 223–230.

    Article  CAS  Google Scholar 

  • Stumm, W. & J. Morgan, 1996. Aquatic chemistry, chemical equilibria and rates in natural waters. Wiley, New York: 1022 pp.

    Google Scholar 

  • Thomas, H., Y. Bozec, K. Elkalay & H. J. W. de Baar, 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304: 1005–1008.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, S. & J. McManus, 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay estuary, Scotland. Estuarine, Coastal and Shelf Science 38: 219–233.

    Article  CAS  Google Scholar 

  • Verhoeven, J., 1980. The ecology of Ruppia-dominated communities in western Europe. III. Aspects of production, consumption and decomposition. Aquatic Botany 8: 209–253.

    Article  CAS  Google Scholar 

  • Vidal-Abarca, M., M. Suárez, C. Guerrero, J. Velasco, J. L. Moreno, A. Millán & A. Perán, 2001. Dynamics of dissolved and particulate organic carbon in a saline and semiarid stream of southeast Spain (Chicamo stream). Hydrobiologia 455: 71–78.

    Article  CAS  Google Scholar 

  • Vizzini, S. & A. Mazzola, 2003. Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon. Marine Biology 142: 1009–1018.

    CAS  Google Scholar 

  • Vizzini, S. & A. Mazzola, 2006. Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: evidence for spatial variability. Estuarine, Coastal and Shelf Science 66: 459–467.

    Article  Google Scholar 

  • Vizzini, S. & A. Mazzola, 2008. The fate of organic matter sources in coastal environments: a comparison of three Mediterranean lagoons. Hydrobiologia 611: 67–79.

    Article  CAS  Google Scholar 

  • Vizzini, S., B. Savona, T. Chi & A. Mazzola, 2005. Spatial variability of stable carbon and nitrogen isotope ratios in a Mediterranean coastal lagoon. Hydrobiologia 550: 73–82.

    Article  CAS  Google Scholar 

  • Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research-Atmospheres 97: 7373–7382.

    Article  Google Scholar 

  • Wanninkhof, R. & M. Knox, 1996. Chemical enhancement of CO2 exchange in natural waters. Limnology and Oceanography 41: 689–697.

    Article  CAS  Google Scholar 

  • Weiss, R., 1974. Carbon dioxide in water and seawater. The solubility of a non-ideal gas. Marine Chemistry 2: 203–215.

    Article  CAS  Google Scholar 

  • Williams, P. & P. A. del Giorgio, 2005. Respiration in aquatic ecosystems: history and background. In del Giorgio, P. A. & P. Williams (eds), Respiration in Aquatic Systems. Oxford University Press, New York: 1–17.

    Chapter  Google Scholar 

  • Zeebe, R. & D. Wolf-Gladrow, 2005. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier, Amsterdam: 346 pp.

  • Ziegler, S. E. & R. Benner, 1998. Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Marine Ecology Progress Series 173: 1–12.

    Article  Google Scholar 

  • Ziegler, S. & R. Benner, 1999. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Marine Ecology Progress Series 180: 149–160.

    Article  Google Scholar 

Download references

Acknowledgments

This study received funding from the Institut Menorquí d’Estudis, the Govern de les Illes Balears and the Island Council of Menorca. For the valuable field and lab assistance we thank Lídia Cañas, Júlia Garcia and Sam Pons. Helpful comments from J. A. Morguí and P. López are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biel Obrador.

Additional information

Guest editors: R. de Wit, N. Mazouni & P. Viaroli / Research and Management for the Conservation of Coastal Lagoon Ecosystems: South – North Comparisons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obrador, B., Pretus, J.L. Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiologia 699, 35–54 (2012). https://doi.org/10.1007/s10750-012-1152-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1152-7

Keywords

Navigation