Skip to main content
Log in

A comparison of genetic variation among wild and cultivated Morus Species (Moraceae: Morus) as revealed by ISSR and SSR markers

  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In this study, inter-simple sequence repeats (ISSR) ans simple sequence repeat (SSR) markers were used to investigate genetic diversity of 27 mulberry accessions including 19 cultivated accessions (six M. multicaulis, three M. alba, two M. atropurpurea, two M. bombycis, one M. australis, two M. rotundiloba, one M. alba var. pendula, one M. alba var. macrophylla, and one M. alba var. venose) and 8 wild accessions (two M. cathayana, two M. laevigata, two M. wittiorum, one M. nigra and one M. mongolica). ISSRs and SSRs were compared in terms of their informativeness and efficiency in a study of genetic diversity and relationships among 27 mulberry genotypes. SSRs presented a higher level of polymorphism and greater information content. All index values of genetic diversity both markers analyzed using Popgene 32 software indicated that within wild species had higher genetic diversity than within cultivated species. Cultivation may caused the lose of genetic diversity of mulberry compared with wild species revealed by ISSR and SSR markers. The mean genetic similarity coefficients among all mulberry genotypes ascribed by ISSR and SSR matrices were 0.7677 and 0.6131, respectively. For all markers a high similarity in dendrogram topologies was obtained although some differences were observed. Cluster analysis of ISSR and SSR using UPGMA method revealed that the wild species are genetically distant from the domesticated species studied here. The correlation coefficients of similarity were statistically significant for both marker systems used. Principal coordinates analysis (PCA) for ISSR and SSR data also supports their UPGMA clustering. These results have an important implication for mulberry germplasm characterization, improvement, molecular systematics and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal R.K., Udaykumar D., Hender P.S., Sarkar A. and Singh L. (2004). Isolation and characterization of six novel microsatellite markers for mulberry (Morns indica). Molecular Ecology Notes 4(3): 477–479

    Article  CAS  Google Scholar 

  • Awasthi A.K., Nagaraja G.M., Naik G.V., Thangavelu K., Nagaraju J. and Sriramana (2004). Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genetics 5: 1

    Article  PubMed  Google Scholar 

  • Botstein D., White R.L., Skolnick M. and Davis R.W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32: 314–331

    PubMed  CAS  Google Scholar 

  • Budak H., Pedraza F., Baenziger P.S., Cregan P.B. and Dweikat I. (2003). Development and utilization of SSR to estimate genetic diversity in a collection of pearl millet germplasm. Crop Science 43: 2284–2290

    Article  CAS  Google Scholar 

  • Connell J.P., Pammi S., Iqbal M.J., Huizinga T. and Reddy A.S. (1998). A high throughput procedure for capturing microsatellites from complex plant genomes. Plant Molecular Biology Reporter 16: 341–349

    Article  CAS  Google Scholar 

  • Dandin S.B. (1998). Mulberry a versatile biosource in the service of mankind. Acta Sericologic Sinica 24(2): 109–113

    Google Scholar 

  • Doyle J.J. and Doyle J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15

    Google Scholar 

  • Esha B. and Shirish A.R. (2001). Molecular distinction amongst varieties of Mulberry using RAPD and DAMD profiles. BMC Plant Biology 1: 3

    Article  Google Scholar 

  • Feng L.C., Yang G.W., Yu M.D., Ke Y.F. and Xiang Z.H. (1996). Studies on the genetic identities and relationships of mulberry cultivated species (Morus L.) via a random amplified polymorphic DNA assay. Acta Sericologic Sinica 22: 135–139

    CAS  Google Scholar 

  • Gower J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338

    Google Scholar 

  • Hard D.L. and Clark A.G. (1989). Principles of Population Genetics. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • He G.H., Meng R.H., Newman M., Gao G.Q., Pittman R.N. and Prakash C.S. (2003). Microsatellites as DNA markers in cultivated peanut. BMC Plant Biology 3(1): 3–11

    Article  PubMed  Google Scholar 

  • Hirano H. (1982). Varietal differences of leaf protein profiles in mulberry. Phytochemistry 21: 1513–1518

    Article  CAS  Google Scholar 

  • Katsumata F. (1972). Relationship between the length of styles and the shape of idioplasts in mulberry leaves, with special reference to the classification of mulberry trees. Journal of Sericultural Science (Japan) 41: 387–395

    Google Scholar 

  • Katsumata F. (1979). Chromosomes of Morus nigra L. from Java and hybridization affinity between this species and some mulberry species in Japan. Journal of Sericultural Science (Japan) 48: 418–422

    Google Scholar 

  • Koidzumi G. (1917). Taxonomical discussion on Morus plants. Bulletin Imp. Sericultural Experiment Sta. (in Japanese) 3: 1–62

    Google Scholar 

  • Milbourne D., Meyer R., Bradshaw J.E., Baird E., Bonar N., Provan J., Powell W. and Waugh R. (1997). Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molecular Breeding 3: 127–136

    Article  CAS  Google Scholar 

  • Morgante M. and Olivieri A.M. (1993). PCR-amplified microsatellites as markers in plant genetics. The Plant Journal 3: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Nei M. and Li W.H. (1979). Mathematical model for studying genetic variation in term of restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America 76: 5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321–3323.

  • Nybom H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13(5): 1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Pan Y.L. (2000). Progress and prospect of germplasm resources and breeding of mulberry. Acta Sericologic Sinica 26(Suppl): 1–8

    Google Scholar 

  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S. and Rafalski A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225–238

    Article  CAS  Google Scholar 

  • Rahman M.H., Dayanandan S. and Rajora O.P. (2000). Genome 43: 293–297

    Article  PubMed  CAS  Google Scholar 

  • Rongwen J., Akkaya M.S., Bhagwat A.A., Lavi U. and Cregan P.B. (1995). The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics 90: 43–48

    Article  CAS  Google Scholar 

  • Shannon C.E. and Weaver W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sharma A., Sharma R. and Machii H. (2000). Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theoretical and Applied Genetics 101: 1049–1055

    Article  CAS  Google Scholar 

  • Vijayan K. and Chatterjee S.N. (2003). ISSR profiling of Indian cultivars of mulberry (Mores spp.) and its relevance to breeding programs. Euphytica 131: 53–63

    Article  CAS  Google Scholar 

  • Vijayan K., Srivastava P.P. and Awasthi A.K. (2004a). Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47(3): 439–448

    Article  CAS  Google Scholar 

  • Vijayan K., Kar P.K., Tikader A., Srivastava P.P., Awasthi A.K., Thangavelu K. and Saratchandra B. (2004b). Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breeding 123(6): 568–572

    Article  CAS  Google Scholar 

  • Wang D., Shi J., Carlson S.R., Cregan P.B., Ward R.W. and Diers B.W. (2003). A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Science 43: 1828–1832

    Article  CAS  Google Scholar 

  • Weber J.L. (1990). Informativeness of human (dC–dA)n (dG–dT)n polymorphism. Genomics 7: 524–530

    Article  PubMed  CAS  Google Scholar 

  • Wolfe A.D., Xiang Q.Y. and Kephart S.R. (1998). Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter-simple sequence repeat (ISSR) bands. Molecular Ecology 7(9): 1107–1125

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z.H., Zhang Z. and Yu M. (1995). Preliminary report on the application of RAPD in systematics of Morus AL. Acta Sericologic Sinica 21: 208

    Google Scholar 

  • Zhao W.G. and Pan Y.L. (2000). RAPD analysis for the germplasm resources of genus mulberry. Acta Sericologic Sinica 4: 1–8

    Article  Google Scholar 

  • Zietkiewicz E., Rafalski A. and Labuda D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Yile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiguo, Z., Zhihua, Z., Xuexia, M. et al. A comparison of genetic variation among wild and cultivated Morus Species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodivers Conserv 16, 275–290 (2007). https://doi.org/10.1007/s10531-005-6973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-005-6973-5

Keywords

Navigation