Skip to main content

Advertisement

Log in

Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species often display high fitness despite bottlenecks and inbreeding during establishment. We address this paradox through simulations and experiments that assess the potential for purging of genetic load during range expansion. Success of invaders often depends on the production of vigorous inbred offspring allowing for rapid population growth after colonization. Substantial genetic load of outbreeding species reduces the fitness of offspring as inbreeding ensues during the establishment of populations. In our simulations, sustained selfing or outcrossing within isolated populations did little to remove deleterious mutations. Conversely, inbreeding combined with periodic gene flow resulted in efficient purging and accelerated rates of range expansion. Purging efficiency was dependent on initial genetic diversity levels, in line with predictions that multiple introductions facilitate invasion and the evolution of more aggressive invaders. Simulation predictions were tested using the invasive species Brachypodium sylvaticum. Homozygous populations on B. sylvaticum’s range periphery displayed lower inbreeding depression compared to heterozygous populations near introduction sites. Empirical tests with B. sylvaticum demonstrate that purging of genetic load is a plausible scenario promoting range expansion during invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barrett SCH, Charlesworth D (1991) Effects of a change in the level of inbreeding on the genetic load. Nature 352:522–524

    Article  PubMed  CAS  Google Scholar 

  • Barringer BC, Kulka EA, Galloway LF (2012) Reduced inbreeding depression in peripheral relative to central populations of a monocarpic herb. J Evol Biol 25:1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Byers DL, Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30:479–513

    Article  Google Scholar 

  • Carr DE, Dudash MR (2003) Recent approaches into the genetic basis of inbreeding depression in plants. Philos Trans R Soc Lond Ser B Biol Sci 358:1071–1084

    Article  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  PubMed  CAS  Google Scholar 

  • Crnokrak P, Barrett SCH (2002) Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56:2347–2358

    Article  PubMed  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York 656 pp

    Google Scholar 

  • Cutter AD, Payseur BA (2013) Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 14:262–274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denver DR, Morris K, Lynch M et al (2004) High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682

    Article  PubMed  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  PubMed  CAS  Google Scholar 

  • Endels P, Jacquemyn H, Brys R et al (2007) Genetic erosion explains deviation from demographic response to disturbance and year variation in relic populations of the perennial Primula vulgaris. J Ecol 95:960–972

    Article  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610–618

    Article  PubMed  CAS  Google Scholar 

  • Facon B, Pointier J-P, Jarne P et al (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63

    Article  Google Scholar 

  • Frankham R (2004) Resolving the genetic paradox in invasive species. Heredity 94:385

    Article  Google Scholar 

  • Goodwillie C, Knight MC (2006) Inbreeding depression and mixed mating in Leptosiphon jepsonii: a comparison of three populations. Ann Bot 98:351–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Haag-Liautard C, Dorris M, Maside X et al (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445:82–85

    Article  PubMed  CAS  Google Scholar 

  • Haikola S, Fortelius W, O’Hara RB et al (2001) Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations. Conserv Genet 2:325–335

    Article  Google Scholar 

  • Halligan DL, Keightley PD (2009) Spontaneous mutation accumulation studies in evolutionary genetics. Annu Rev Ecol Evol Syst 40:151–172

    Article  Google Scholar 

  • Hartl DL, Clark AG (2006) Principles of population genetics. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Hedrick PW, Fredrickson R (2010) Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv Genet 11:615–626

    Article  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1995) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291

    Article  Google Scholar 

  • Jarne P, Charlesworth D (1993) The evolution of the selfing rate in functionally hermaphrodite plants and animals. Annu Rev Ecol Syst 24:441–466

    Article  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME et al (2010) Genetic restoration of the Florida panther. Science 329:1641–1645

    Article  PubMed  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Lande R, Schemske D (1985) The evolution of self-fertilization and inbreeding depression in plants I. Genetic models. Evolution 39:24–40

    Article  Google Scholar 

  • Lande R, Schemske DW, Schultz ST (1994) High inbreeding depression, selective interference among loci, and the threshold selfing rate for purging recessive lethal mutations. Evolution 48:965–978

    Article  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the ‘success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leberg PL, Firmin BD (2008) Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol Ecol 17:334–343

    Article  PubMed  Google Scholar 

  • Lynch M, Blanchard J, Houle D et al (1999) Perspective: spontaneous deleterious mutation. Evolution 53:645–663

    Article  Google Scholar 

  • Meimberg H, Milan NF, Karatassiou M et al (2010) Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils. Mol Ecol 19:5308–5319

    Article  PubMed  Google Scholar 

  • Nagylaki T (1976) A model for the evolution of self fertilization and vegetative reproduction. J Theor Biol 58:55–58

    Article  PubMed  CAS  Google Scholar 

  • Neher RA (2013) Genetic draft, selective interference, and population genetics of rapid adaptation. Annu Rev Ecol Evol Syst 44:195–215

    Article  Google Scholar 

  • Novak SJ, Mack RN (1995) Allozyme diversity in the apomictic vine Bryonia-alba (Cucurbitaceae)—potential consequences of multiple introductions. Am J Bot 82:1153–1162

    Article  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledo JI et al (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  PubMed  CAS  Google Scholar 

  • Pujol B, Zhou S-R, Vilas JS et al (2009) Reduced inbreeding depression after species range expansion. Proc Natl Acad Sci USA 106:15379–15383

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan AP, Musial T, Cruzan MB (2010) Shifting dispersal modes at an expanding species’ range margin. Mol Ecol 19:1134–1146

    Article  PubMed  Google Scholar 

  • Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. Am Nat 155:383–394

    Article  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources and intraspecific hybridization at early stages of the invasion of Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17:4657–4669

    Article  PubMed  Google Scholar 

  • Roy BA (2010) Brachypodium sylvaticum. Invasive species compendium. CAB International Publishing, Wallingford

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Swindell WR, Bouzat JL (2006) Selection and inbreeding depression: effects of inbreeding rate and inbreeding environment. Evolution 60:1014–1022

    Article  PubMed  Google Scholar 

  • Whitlock MC (2002) Selection, load and inbreeding depression in a large metapopullation. Genetics 160:1191–1202

    PubMed  PubMed Central  Google Scholar 

  • Whitlock MC, Bourguet D (2000) Factors affecting the genetic load in Drosophila: synergistic epistatis and correlations among fitness components. Evolution 54:1654–1660

    Article  PubMed  CAS  Google Scholar 

  • Winn AA, Elle E, Kalisz S et al (2011) Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution 65:3339–3359

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. Butler, B. Hergic, J. Lawson, and M. Steele for technical assistance, and T. Cheeke, C. Lee, T. Musial, and R. Workman for comments on the manuscript. This work was funded by a Faculty Enhancement Grant from the Office of Academic Affairs at Portland State University to M.B.C., and by USDA Grant #2005-35320-15317 to M.B.C. and A.P.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gina L. Marchini or Mitchell B. Cruzan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchini, G.L., Sherlock, N.C., Ramakrishnan, A.P. et al. Rapid purging of genetic load in a metapopulation and consequences for range expansion in an invasive plant. Biol Invasions 18, 183–196 (2016). https://doi.org/10.1007/s10530-015-1001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-1001-5

Keywords

Navigation