Skip to main content

Advertisement

Log in

Assessing and predicting the spread of non-native raccoons in Germany using hunting bag data and dispersal weighted models

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

As the second largest cause of biodiversity loss worldwide, there is an urgent need to study the dynamics of biological invasions and identify factors limiting the distribution of invasive alien species. In the present study we analyze national-scale hunting bag data from Germany to predict the dispersal of raccoons in the largest non-native population of the species. Our focus is (1) to document changes in the distribution and abundance of raccoons, (2) to identify the species–environment relationship and predict which areas will be suitable for future colonization and (3) to apply a dispersal model to predict how fast the raccoon will spread to these areas. The increase from about 9000 harvested raccoons in 2000/01 to about 71,000 in 2011/12 reflects the extensive amount of suitable habitat for this omnivorous species in Central Europe. The best model for explaining range expansion in Germany identified coverage of agriculture and fragmentation and coverage of forests as the most important explanatory variables. The range of raccoons (area with harvest index >0.1 per 100 ha) increased from 26,515 km2 in 2001 to 111,630 km2 in 2011, and is predicted to expand to 252,940 km2 by 2061, 71 % of the area of Germany. This vast area encompasses strategically important areas for conservation biology, such as wetlands with endangered native terrapins. The combination of merging of separated introduced populations and accelerating population growth highlights the potential for future impacts of raccoons on native communities, ecosystems and economic life in Germany and Central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez A (2008) Predation of Spanish terrapin Mauremys leprosa clutches by raccoons. Quercus 269:49 (in Spanish)

    Google Scholar 

  • Arnold JM, Greiser G, Keuling O, Martin I, Strauß E (2013) Status und Entwicklung ausgewählter Wildtierarten in Deutschland. Jahresbericht 2012. Wildtier-Informationssystem der Länder Deutschlands (WILD). Deutscher Jagdverband e.V. (ed), Berlin (in German)

    Google Scholar 

  • Araújo MB, New M (2007) Ensemble forcasting of species distributions. Trends Ecol Evol 22(1):42–47

    Article  PubMed  Google Scholar 

  • Baines D, Hudson PJ (1995) The decline of black grouse in Scotland and northern England. Bird Study 42(2):122–131

    Article  Google Scholar 

  • Bartel M, Greiser G, Keuling O, Klein R, Martin I, Strauß E, Winter A (2012) Status und Entwicklung ausgewählter Wildtierarten in Deutschland. Jahresbericht 2011. Wildtier-Informationssystem der Länder Deutschlands (WILD). Deutscher Jagdverband e.V. (ed), Berlin (in German)

    Google Scholar 

  • Beasley JC, DeVault TL, Retamosa MI, Rhodes OE (2007) A hierarchical analysis of habitat selection by raccoons in northern Indiana. J Wildl Manag 71(4):1125–1133

    Article  Google Scholar 

  • Beltrán-Beck B, García FJ, Gortázar C (2012) Raccoons in Europe: disease hazards due to the establishment of an invasive species. Eur J Wildl Res 58(1):5–15

    Article  Google Scholar 

  • Bosch J, Peris S, Fonseca C, Martinez M, De La Torre A, Iglesias I, Munoz MJ (2012) Distribution, abundance and density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statistics. Folia Zool 61(2):138–151

    Google Scholar 

  • Brzeziński M, Romanowski J, Żmihorski M, Karpowicz K (2010) Muskrat (Ondatra zibethicus) decline after the expansion of American mink (Neovison vison) in Poland. Eur J Wildl Res 56(3):341–348

    Article  Google Scholar 

  • Carlsson NO, Jeschke JM, Holmqvist N, Kindberg J (2010) Long-term data on invaders: when the fox is away, the mink will play. Biol Invasions 12(3):633–641

    Article  Google Scholar 

  • Cattadori IM, Haydon DT, Thirgood SJ, Hudson PJ (2003) Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 100(3):439–446

    Article  Google Scholar 

  • Chalfoun AD, Ratnaswamy MJ, Thompson FR III (2002) Songbird nest predators in forest-pasture edge and forest interior in a fragmented landscape. Ecol Appl 12(3):858–867

    Google Scholar 

  • Cullingham CI, Pond BA, Kyle CJ, Rees EE, Rosatte RC, White BN (2008) Combining direct and indirect genetic methods to estimate dispersal for informing wildlife disease management decisions. Mol Ecol 17(22):4874–4886

    Article  PubMed  CAS  Google Scholar 

  • Dharmarajan G, Beasley JC, Fike JA, Rhodes OE (2009) Population genetic structure of raccoons (Procyon lotor) inhabiting a highly fragmented landscape. Can J Zool 87(9):814–824

    Article  CAS  Google Scholar 

  • Engeman RM, Whisson D, Quinn J, Cano F, Quiñones P, White TH (2006) Monitoring invasive mammalian predator populations sharing habitat with the critically endangered Puerto Rican parrot Amazona vittata. Oryx 40(01):95–102

    Article  Google Scholar 

  • Engeman RM, Massei G, Sage M, Gentle MN (2013) Monitoring wild pig populations: a review of methods. Environ Sci Pollut Res 20(11):8077–8091

    Article  CAS  Google Scholar 

  • Fischer ML, Hochkirch A, Heddergott M, Schulze C, Anheyer-Behmenburg HE, Lang J et al (2015) Historical invasion records can be misleading: genetic evidence for multiple introductions of invasive raccoons (Procyon lotor) in Germany. PLoS One 10(5):e0125441. doi:10.1371/journal.pone.0125441

    Article  PubMed  PubMed Central  Google Scholar 

  • Frantz AC, Cyriacks P, Schley L (2005) Spatial behaviour of a female raccoon (Procyon lotor) at the edge of the species’ European distribution range. Eur J Wildl Res 51:126–130

    Article  Google Scholar 

  • Frantz AC, Heddergott M, Lang J, Schulze C, Ansorge H, Runge M, Braune S, Michler FU, Wittstatt U, Hoffmann L, Hohmann U, Michler BA, Van Den Berge K, Horsburgh GJ (2013) Limited mitochondrial DNA diversity is indicative of a small number of founders of the German raccoon (Procyon lotor) population. Eur J Wildl Res 59(5):665–674

    Article  Google Scholar 

  • Fraser EJ, Lambin X, Travis JM, Harrington LA, Palmer SC, Bocedi G, Macdonald DW (2015) Range expansion of an invasive species through a heterogeneous landscape—the case of American mink in Scotland. Divers Distrib 21:888–900

    Article  Google Scholar 

  • García JT, García FJ, Alda F, González JL, Aramburu MJ, Cortés Y, Prieto B, Pliego B, Pérez M, Herrera J, García-Roman L (2012) Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biol Invasions 14:1305–1310

    Article  Google Scholar 

  • Gebhardt H (1996) Ecological and economic consequences of introductions of exotic wildlife (Birds and mammals) in Germany. Wildl Biol 2:205–211

    Google Scholar 

  • Gehrt SD, Fritzell EK (1998) Resource distribution, female home range dispersion and male spatial interactions: group structure in a solitary carnivore. Anim Behav 55(5):1211–1227

    Article  PubMed  Google Scholar 

  • Giovanelli JG, Haddad CF, Alexandrino J (2008) Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions 10(5):585–590

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009

    Article  Google Scholar 

  • Günther E, Hellmann M (2002) Starker Bestandsrückgang baumbrütender Mauersegler Apus apus im nordöstlichen Harz (Sachsen-Anhalt)—War es der Waschbar Procyon lotor? Ornithologische Jahresberichte des Museum Heineanum Halberstadt 20:81–98 (in German)

    Google Scholar 

  • Hayama H, Kaneda M, Tabata M (2006) Rapid range expansion of the feral raccoon (Procyon lotor) in Kanagawa Prefecture, Japan, and its impact on native organisms. In: Koike F, Clout MN, Kawamichi M, De Poorter M, Iwatsuki K (eds) Assessment and control of biological invasion risks. Shoukadoh Book Sellers/IUCN, Kyoto/Gland, pp 196–199

    Google Scholar 

  • Hohmann U (1998) Untersuchungen zur Raumnutzung des Waschbären (Procyon lotor L. 1758) im Solling, Südniedersachsen, unter besonderer Berücksichtigung des Sozialverhaltens. Hainholz (in German)

  • Hohmann U, Bartussek I (2011) Der Waschbär. Verlag Oertel and Spörer, 3rd edn., Reutlingen (in German)

  • Hornell-Willebrand M, Marcstrom V, Brittas R, Willebrand T (2006) Temporal and spatial correlation in chick production of willow grouse Lagopus lagopus in Sweden and Norway. Wildl Biol 12:347–355

    Article  Google Scholar 

  • Hulme PE (2007) Biological invasions in Europe: drivers, pressures, states, impacts and responses. In: Hester RE, Harrison RM (eds) Issues in environmental science and technology, no. 25, biodiversity under threat. Royal Society of Chemistry, Cambridge, pp 56–80

    Chapter  Google Scholar 

  • Ikeda T, Asano M, Matoba Y, Abe G (2004) Present status of invasive alien raccoon and its impact in Japan. Glob Environ Res 8(2):125–131

    Google Scholar 

  • Imperio S, Ferrante M, Grignetti A, Santini G, Focardi S (2010) Investigating population dynamics in ungulates: do hunting statistics make up a good index of population abundance? Wildl Biol 16:205–214

    Article  Google Scholar 

  • Jagdschutzverband e.V. (DJV) Deutscher (2012) DJV-Handbuch Jagd. Griebsch and Rochol Druck, Hamm (in German)

    Google Scholar 

  • Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  • Kaufmann JH (1982) Raccoon and allies. In: Chapman JA, Feldhamer GA (eds) Wild mammals of North America. John Hopkins University Press, Baltimore, pp 567–585

    Google Scholar 

  • Kauhala K (1996) Introduced carnivores in Europe with special reference to central and northern Europe. Wildl Biol 2:197–204

    Google Scholar 

  • Keller RP, Geist J, Jeschke JM, Kühn I (2011) Invasive species in Europe: ecology, status, and policy. Environ Sci Eur 23:1–17

    Article  Google Scholar 

  • Kerlin DH, Haydon DT, Miller D, Aebischer NJ, Smith AA, Thirgood SJ (2007) Spatial synchrony in red grouse population dynamics. Oikos 116:2007–2016

    Article  Google Scholar 

  • Kitson JC (2004) Harvest rate of sooty shearwaters (Puffinus griseus) by Rakiura Māori: a potential tool to monitor population trends? Wildl Res 31(3):319–325

    Article  Google Scholar 

  • Knauer F, Küchenhoff H, Pilz S (2010) A statistical analysis of the relationship between red fox Vulpes vulpes and its prey species (grey partridge Perdix perdix, brown hare Lepus europaeus and rabbit Oryctolagus cuniculus) in Western Germany from 1958 to 1998. Wildl Biol 16(1):56–65

    Article  Google Scholar 

  • Koike F (2006) Prediction of range expansion and optimum strategy for spatial control of feral raccoon using a metapopulation model. In: Koike F, Clout MN, Kawamichi M, De Poorter M, Iwatsuki K (eds) Assessment and Control of Biological Invasion Risks. SHOUKADOH Book Sellers and the World Conservation Union (IUCN), Kyoto, Japan and Gland, Switzerland

    Google Scholar 

  • Kolbe JJ, Larson A, Losos JB, de Queiroz K (2008) Admixture determines genetic diversity and population differentiation in the biological invasion of a lizard species. Biol Lett 4(4):434–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz W (1981) Untersuchungen zur Nahrungsbiologie des Waschbären Procyon lotor (Linné 1758) und zum Einfluß auf andere Wildarten in seinem Lebensraum. Dissertation, Universität Heidelberg (in German)

  • Lutz W (1984) Die Verbreitung des Waschbären (Procyon lotor, Linné 1758) im mitteleuropäischen Raum. Zeitschrift für Jagdwissenschaft 30(4):218–228 (in German)

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes epidemiology, global consequences and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • Michler FU, Köhnemann BA (2010) Tierische Spitzenleistung—Abwanderungsverhalten von Waschbären (Procyon lotor L., 1758) in Norddeutschland. Labus 31:52–59 (in German)

    Google Scholar 

  • Michler FU, Köhnemann BA, Gabelmann K, Schäuble D, Ortmann S, Muschik I (2008) Waschbärforschungsprojekt im Müritz-Nationalpark—Untersuchungen zur Populationsökologie des Waschbären (Procyon lotor L., 1758) im Müritz-Nationalpark (Mecklenburg-Vorpommern) Zwischenbericht 2007. In: 15 Jagdbericht für Mecklenburg-Vorpommern, pp 19–24 (in German)

  • Muschik I, Köhnemann B, Michler FU (2011) Untersuchungen zur Entwicklung des Raum- und Sozialverhaltens von Waschbär-Mutterfamilien (Procyon lotor L.) und dessen jagdrechtliche Relevanz. Beiträge zur Jagd- und Wildtierforschung 36:573–585

    Google Scholar 

  • NCAR—Research Application Program (2007) verication: forecast verication utilities. R package version 1.20, http://CRAN.R-project.org/

  • Pedlar JH, Fahrig L, Merriam HG (1997) Raccoon habitat use at 2 spatial scales. J Wildl Manag 61(1):102–112

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52(3):273–288

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  • Ranta E, Lindstrom J, Linden H, Helle P (2008) How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos 117:1461–1468

    Article  Google Scholar 

  • Rasper M (2000) Der unheimliche Untermieter - Natur und Kosmos 5:110–121 (in German)

    Google Scholar 

  • Real R, Barbosa AM, Vargas JM (2006) Obtaining environmental favourability functions from logistic regression. Environ Ecol Stat 13(2):237–245

    Article  Google Scholar 

  • Riley SP, Hadidian J, Manski DA (1998) Population density, survival, and rabies in raccoons in an urban national park. Can J Zool 76(6):1153–1164

    Article  Google Scholar 

  • Roy HE, Preston CD, Harrower CA, Rorke SL, Noble D, Sewell J, Walker K, Marchant J, Seeley B, Bishop J, Jukes A, Musgrove Pearman D, Booy O (2014a) GB non-native species information portal: documenting the arrival of non-native species in Britain. Biol Invasions 16(12):2495–2505

    Article  Google Scholar 

  • Roy HE et al (2014b) Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob Change Biol 20(12):3859–3871. doi:10.1111/gcb.12603

    Article  Google Scholar 

  • Saito M, Koike F, Momose H, Mihira T, Uematsu S, Ohtani T, Sekiyama K (2012) Forecasting the range expansion of a recolonising wild boar Sus scrofa population. Wildl Biol 18(4):383–392

    Article  Google Scholar 

  • Schneeweiß N, Wolf M (2009) Neozoen–eine neue Gefahr für die Reliktpopulationen der Europäischen Sumpfschildkröte in Nordostdeutschland. Zeitschrift für Feldherpetologie 16:163–182 (in German)

    Google Scholar 

  • Schrack M (2010) Der Nordamerikanische Waschbär (Procyon lotor)—ein Gegenspieler wehrhafter Vogelarten? Veröffentlichungen Museum Westlausitz Kamenz 30:75–82 (in German)

    Google Scholar 

  • Schulte U, Veith M, Hochkirch A (2012) Rapid genetic assimilation of native wall lizard populations (Podarcis muralis) through extensive hybridization with introduced lineages. Mol Ecol 21(17):4313–4326

    Article  PubMed  Google Scholar 

  • Shigesada N, Kawasaki K, Takeda Y (1995) Modelling stratified diffusion in biological invasions. Am Nat 146(2):229–251

    Article  Google Scholar 

  • Shine R, Brown G, Phillips B (2011) An evolutionary process that assembles phenotypes through space rather than time. Proc Natl Acad Sci USA 108(14):5708–5711

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sorvillo F, Lawrence RA, Berlin OGW, Yatabe J, Degiorgio C, Morse SA (2002) Bayliscaris procyonis: an emerging helminthic zoonosis. Emerg Infect Dis 8(4):355–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterner RT, Smith GC (2006) Modelling wildlife rabies: transmission, economics, and conservation. Biol Conserv 131(2):163–179

    Article  Google Scholar 

  • Stubbe M (1975) Der Waschbär Procyon lotor (L., 1758) in der DDR. Hercynia NF 12(1):80–91 (in German)

    Google Scholar 

  • Sullivan MJP, Davies RG, Reino L, Franco A (2012) Using dispersal information to model the species—environment relationship of spreading non-native species. Methods Ecol Evol 3(5):870–879

    Article  Google Scholar 

  • Sullivan MJP, Newson SE, Pearce-Higgins JW (2015) Evidence for the buffer effect operating in multiple species at a national scale. Biol Lett 11:20140930

    Article  PubMed  PubMed Central  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thomas SM, Moloney KA (2015) Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biol Invasions 17(1):477–495

    Article  Google Scholar 

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Václavík T, Kupfer JA, Meentemeyer RK (2012) Accounting for multi-scale autocorrelation improves performance of species distribution models (iSDM). J Biogeogr 39:42–55

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vos A, Ortmann S, Kretzschmar AS, Köhnemann B, Michler F (2012) The raccoon (Procyon lotor) as potential rabies reservoir species in Germany: a risk assessment. Berliner und Münchener Tierärztliche Wochenschrift 125:228–235

    PubMed  Google Scholar 

  • Vos A, Nolden T, Habla C, Finke S, Freuling CM, Teifke J, Müller T (2013) Raccoons (Procyon lotor) in Germany as potential reservoir species for Lysaviruses. Eur J Wildl Res 59(5):637–643

    Article  Google Scholar 

  • Winter M (2004) Zur Ökologie des Waschbären (Procyon lotor L., 1758) in Sachsen-Anhalt (Diplomarbeit Martin-Luther-Universität Halle-Wittenberg) (in German)

  • Woodroffe GL, Lawton JH, Davidson WL (1990) The impact of feral mink Mustela vison on water voles Arvicola terrestris in the Nort Yorkshire National Park. Biol Conserv 51(1):49–62

    Article  Google Scholar 

  • Yokomizo H, Possingham HP, Thomas MB, Buckley YM (2009) Managing the impact of invasive species: the value of knowing the density-impact curve. Ecol Appl 19(2):376–386

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work is funded by the German Science Foundation (DFG, GRK 1319) as part of the interdisciplinary graduate school ‘Cooperation of Science and Jurisprudence in Improving Development and Use of Standards for Environmental Protection–Strategies for Risk Assessment and Management’. We want further thank the German authorities for providing arranged data of their respective administrative district and their attendance for demands. We thank two anonymous reviewers for their constructive comments on this manuscript.

Author contributions

Marietta L. Fischer designed the study. Marietta L. Fischer, Martin J. P. Sullivan and José Guerrero-Casado analysed the data. Marietta L. Fischer, Grit Greiser, Mike Heddergott, Ulf Hohmann, Oliver Keuling, Johannes Lang, Ina Martin, Frank-Uwe Michler, Armin Winter and Roland Klein collected the data. Marietta L. Fischer and Martin J. P. Sullivan wrote the paper, with contributions from the other authors. Roland Klein supervised Marietta L. Fischer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marietta L. Fischer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, M.L., Sullivan, M.J.P., Greiser, G. et al. Assessing and predicting the spread of non-native raccoons in Germany using hunting bag data and dispersal weighted models. Biol Invasions 18, 57–71 (2016). https://doi.org/10.1007/s10530-015-0989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0989-x

Keywords

Navigation