Skip to main content
Log in

Increase in pectin deposition by overexpression of an ERF gene in cultured cells of Arabidopsis thaliana

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Ethylene-responsive transcription factor (ERF) family genes, which are involved in regulation of metabolic pathways and/or are useful for metabolic engineering, were investigated in the cultured cells of Arabidopsis thaliana. The pectin content in the gelatinous precipitates after the ethanol precipitation of extracts derived from calli of a transgenic cell line, A17, overexpressing an ERF gene (At1g44830), increased in comparison with the control. Expression of genes involved in pectin biosynthesis was up-regulated in the A17 calli. Overexpression of the ERF gene coordinately activates the pectin biosynthetic pathway genes and increases the content of pectin. These results therefore will be useful as a genetic resource for engineering pectin biosynthesis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension culture. Plant Physiol Biochem 30:23–128

    Google Scholar 

  • Bacic A (2006) Breaking an impasse in pectin biosynthesis. Proc Natl Acad Sci USA 103:5639–5640

    Article  PubMed  CAS  Google Scholar 

  • Bouton S, Leboeuf E, Mouille G, Leydecker M-T, Talbotec J, Granier F, Lahaye M, Höfte H, Truong H-N (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 10:2577–2590

    Article  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gillis KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fukuda Y, Ohme M, Shinshi H (1991) Gene structure and expression of a tobacco endochitinase gene in suspension-cultured tobacco cells. Plant Mol Biol 16:1–10

    Article  PubMed  CAS  Google Scholar 

  • Galambos JT (1967) The relation of carbazol with carbohydrates I. Effect of borate and sulfamate on the carbazole color of sugars. Anal Chem 19:119–132

    CAS  Google Scholar 

  • Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol 19:138–144

    Article  PubMed  CAS  Google Scholar 

  • Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  PubMed  CAS  Google Scholar 

  • Iwai H, Masaoka N, Ishii T, Satoh S (2001) A pectin glucuronytransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci USA 99:16319–16324

    Article  Google Scholar 

  • Jensen JK, Sorensen SO, Harholt J, Geshi N et al (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Kakegawa K, Ishii T, Matsunaga T (2007) Effects of boron deficiency in cell suspension culture of Populus alba L. Plant Cell Rep 23:573–578

    Article  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Schell J, Willmitzer L (1987) Improved method for the isolation of RNA from plant tissues. Anal Biochem 163:16–20

    Article  PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  PubMed  CAS  Google Scholar 

  • Mølhøj M, Verma R, Reiter W-D (2003) The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 35:693–703

    Article  PubMed  Google Scholar 

  • Mølhøj M, Verma R, Reiter W-D (2004) The biosynthesis of d-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-d-glucuronate 4-epimerase from Arabidopsis. Plant Physiol 135:1221–1230

    Article  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H (2006) Identification of genes of the plant-specific transcription factors cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119:407–413

    Article  PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Fukuda H (2010) Transcriptional regulation of vascular cell fates. Curr Opin Plant Biol 13:670–676

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Nemoto T, Jigami Y (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-d-glucose to UDO-l-rhamnose conversion. J Biol Chem 282:5389–5403

    Article  PubMed  CAS  Google Scholar 

  • Park J-I, Ishimizu T, Suwabe K, Sudo K, Masuko H, Hakozaki H, Nou I-S, Suzuki G, Watanabe M (2010) UDP-Glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant Cell Physiol 51:981–996

    Article  PubMed  CAS  Google Scholar 

  • Qu L-J, Zhu Y-X (2006) Transcription factor families in Arabidopsis: major progress and outstanding issues for future research. Curr Opin Plant Biol 9:544–549

    Article  PubMed  CAS  Google Scholar 

  • Selvendran RR, Ryden P (1990) Isolation of and analysis of plant cell walls. In: Dey PM (ed) Methods in plant biochemistry, Vol 2. Carbohydrates. Academic press, London, pp 549–597

    Google Scholar 

  • Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ Int J 3:206–228

    Google Scholar 

  • Thakur BR, Singh RK, Handa AK (1997) Chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr 37:47–73

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto-Inui Y, Naito Y, Sakurai N, Suzuki H, Sasaki R, Takahashi H, Ohtsuki N, Nakano T, Yanagisawa S, Shibata D, Uchimiya H, Shinshi H, Suzuki K (2009) Functional genomics of the Dof transcription factor family genes in suspension-cultured cells of Arabidopsis thaliana. Plant Biotechnol 26:15–28

    Article  CAS  Google Scholar 

  • Usadel B, Kuschinsky AM, Rosso MG, Eckermann N, Pauly M (2004) RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol 134:286–295

    Article  PubMed  CAS  Google Scholar 

  • Western TL, Young DS, Dean GH, Tan WL, Samuels AL, Haughn GW (2004) MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally reglated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiol 134:296–306

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, Knox P, Mikkelsen D (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17:97–104

    Article  CAS  Google Scholar 

  • Yamaguchi M, Demura T (2010) Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 27:237–242

    Article  CAS  Google Scholar 

  • York WS, Darvili AG, McNeil M, Albersheim P (1986) Isolation and characterization of plant cell wall and plant cell component. Methods Enzymol 118:3–40

    Article  CAS  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z-H (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 20:564–572

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Shinozaki (RIKEN Plant Science Center, Yokohama, Japan) and RIKEN BioResource Center (Tsukuba, Japan) for providing Arabidopsis T87 cells, and Ms. S. Ito for her technical assistance. This study was supported by New Energy and Industrial Technology Development Organization (NEDO) as part of a project called ‘Development of Fundamental Technologies for Controlling the Material Production Process of Plants’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Suzuki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, T., Naito, Y., Kakegawa, K. et al. Increase in pectin deposition by overexpression of an ERF gene in cultured cells of Arabidopsis thaliana . Biotechnol Lett 34, 763–769 (2012). https://doi.org/10.1007/s10529-011-0826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0826-y

Keywords

Navigation