Skip to main content

Advertisement

Log in

Influence of rubber trees on leaf-miner damage to coffee plants in an agroforestry system

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The coffee leaf-miner (CLM) (Leucoptera coffeella Guérin-Mèneville; Lepidoptera: Lyonetiidae), the main pest of coffee plants, occurs widely throughout the Neotropics where it has a significant, negative economic and quantitative impact on coffee production. This study was conducted in a rubber tree/coffee plant interface that was influenced by the trees to a varying degrees depending on the location of the coffee plants, i.e. from beneath the rubber trees, extending through a range of distances from the edge of the tree plantation to end in a coffee monocrop field. The most severe damage inflicted on coffee plants by the CLM (number of mined leaves) from April, which marks the start of the water deficit period, until September 2003 was in the zone close to the rubber trees, whereas the damage inflicted on plants in the monocropped field was comparable to that on coffee plants grown directly beneath the rubber trees, which received about 25–40 % of the available irradiance (Ir—available irradiation at a certain position divided by the irradiation received in full sunlight, i.e. in the monocrop). From May until July damage caused by the CLM nearly doubled in each month. In midwinter (July), the damage decreased perceptibly from the tree edge toward the open field. From September onward, with the rising air temperatures CLM damage in the coffee monocrop started to increase. Based on these results, we conclude that coffee plants grown in the full sun incurred the most damage only at the end of winter, with warming air temperatures. Coffee plants grown in shadier locations (25–40 % Ir) were less damaged by the CLM, although a higher proportion of their leaves were mined. The rubber trees probably acted as a shelter during the cold autumn and winter seasons, leading to greater CLM damage over a distance outside the rubber tree plantation that was about equal to the height of the trees. Future studies should attempt to relate leaf hydric potential to pest attack in field conditions. More rigorous measurements of shade conditions could improve our understanding of the relationship of this factor to CLM attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avilés DP (1991) Avaliação das populações de bicho mineiro do cafeeiro Perileucoptera coffeella (Lepdoptera: Lyonetiidae) e seus parasitóides e predadores: metodologia de estudo e flutuação estacional. PhD thesis. Universidade Federal de Viçosa, Viçosa

  • Barradas V, Fanjul L (1986) Microclimatic characterization of shaded and open-growth coffee (Coffea arabica) plantations in Mexico. Agric For Meteorol 38:101–112

    Article  Google Scholar 

  • Beer JW, Kass D, Somarriba E, Muschler RG (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Bigger M (1969) Partial resistance of arabica coffee to the coffee leaf miner Leucoptera meyricki Ghesq. (Lepidoptera, Lyonetiidae). E Afr Agric For J 34(4):441–445

  • Borkhataria R, Collazo JA, Groom MJ, Jordan-Garcia A (2012) Shade-grown coffee in Puerto Rico: opportunities to preserve biodiversity while reinvigorating a struggling agricultural commodity. Agric Ecosyst Environ 149:164–170

    Article  Google Scholar 

  • Brenner AJ (1996) Microclimatic modifications in agroforestry. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB International, Wallingford, pp 159–187

    Google Scholar 

  • Bustillo AE, Villacorta A (1994) Manejo de las principales plagas del café en plantaciones de altas densidades. In: Proc Int Symp High Coffee Tree Density. Londrina, PR, pp 185–196

  • Camargo AP (1985) O clima e a cafeicultura no Brasil. Inf Agropec 126(11):13–26

    Google Scholar 

  • Cardenas RM (1981) Caracterización histo-morfológica del daño del minador de la hoja, Leucoptera coffeella (Guérin-Mèneville), en especies y híbridos de Coffea spp. y observaciones sobre a resistencia. PhD thesis. Universidad Nacional de Colombia, Bogota

  • Cardinale B, Harvey C, Gross K, Ives A (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865

    Article  Google Scholar 

  • Carracedo CJ, Oliva A, Zorrilla M (1991) Influencia de algunos factores ecológicos en las fluctuaciones poblacionales del minador de la hoja del cafeto en el Tercer Frente, Santiago de Cuba. Rev Baracoa 21(1):7–29

    Google Scholar 

  • Carvalho GA, Miranda JC, Moura AP, Rocha LCD, Reis PR, Vilela FZ (2005) Controle do Leucoptera coffeella (Guérin-Ménèville, Perrottet, 1842) (Lepidoptera: Lyonetiidae) com inseticidas granulados e seus efeitos sobre vespas predadoras e parasitóides. Arq Inst Biol 72(1):63–72

    Google Scholar 

  • Conceição CHC, Guerreiro-Filho O, Gonçalves W (2005) Flutuação populacional do bicho-mineiro em cultivares de café arábica resistentes à ferrugem. Bragantia 64(4):625–631

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2008) Clumped distribution of oak leaf miners between and within plants. Basic Appl Ecol 9:67–77

    Article  Google Scholar 

  • De la Mora A, Livingston G, Philpott SM (2008) Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica 40(6):742–746

    Article  Google Scholar 

  • Fanton CJ (1991) Efeito do déficit hídrico na biologia do bicho-mineiro-do-cafeeiro, Perileucoptera coffeella (Lepdoptera: Lyonetiidae). PhD thesis. Universidade Federal de Viçosa, Viçosa

  • Fonseca JP (1949) O “bicho-mineiro” das folhas do café e seu combate. O Biológico 15(9):167–172

    Google Scholar 

  • Fragoso DB, Guedes RNC, Picanço MC, Zambolim L (2002) Insecticide use and organophosphate resistance in the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Bull Entomol Res 92:203–212

    Article  PubMed  CAS  Google Scholar 

  • Köppen W (1948) Climatología: con un estudio de los climas de la tierra (translated by Pérez PRH). Fondo de Cultura Economica, Mexico

  • Krug CA (1959) World coffee survey. FAO, Rome

    Google Scholar 

  • Kumar D (1979) Some aspects of the physiology of Coffea arabica L. A review. Kenya Coffee 44:9–47

    Google Scholar 

  • Leroy T, Altosaar I, Duris D, Frutos R, Henry AM, Royer M, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  CAS  Google Scholar 

  • Lomelí-Flores JR, Barrera JF, Bernal JS (2009) Impact of natural enemies on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics in Chiapas, Mexico. Biol Control 51:51–60

    Article  Google Scholar 

  • Lomelí-Flores JR, Barrera JF, Bernal JS (2010) Impacts of weather, shade cover and elevation on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics and natural enemies. Crop Prot 29:1039–1048

    Article  Google Scholar 

  • Ludlow MM, Powles SB (1988) Effects of photoinhibition induced by water stress on growth and yield of grain sorghum. In: Evans JR, Caemmerer S, Adams III WW (eds) Ecology of photosynthesis in sun and shade. CSIRO, Melbourne, pp 179–194

  • Machado JRM, Ferreira AJ, Sampaio AS (1978) Flutuação populacional de “bicho-mineiro” das folhas do cafeeiro em 2 regiões cafeeiras do Estado do Ceará. In: Cong. Bras. Pesq. Cafeeiras. IBC, Rio de Janeiro

  • Mattson JW, Haak RA (1987) The role of drought stress in provoking outbreaks of phytophagus insects. In: Brabosa P, Schultz JC (eds) Insect outbreaks. Academic Press, San Diego

    Google Scholar 

  • Meireles DF, Carvalho JA, Moraes JC (2001) Avaliação da infestação do bicho-mineiro e do crescimento do cafeeiro submetido a diferentes níveis de déficit hídrico. Ciênc Agrotec 25(2):371–374

    Google Scholar 

  • Mendonça JMA, Carvalho GA, Guimarães RJ, Reis PR, Rocha LCD (2006) Produtos naturais e sintéticos no controle de Leucoptera coffeella (Guérin-Mèneville & Perrottet, 1842) (Lepidoptera: Lyonetiidae) e seus efeitos sobre a predação por vespas. Ciênc Agrotec 30(5):892–899

    Article  Google Scholar 

  • Monteith JL, Ong CK, Corlett JE (1991) Microclimatic interactions in agroforestry systems. For Ecol Manag 45:31–44

    Article  Google Scholar 

  • Monterrey J, Suarez D, Gonzalez M (2001) Comportamiento de insectos en sistemas agroforestales con café en el Pacífico sur de Nicaragua. Agrofor Am 8(29):15–21

    Google Scholar 

  • Moraes JC (1998) Pragas do Cafeeiro: Importância e Métodos Alternativos de Controle. UFLA/FAEPE, Lavras

    Google Scholar 

  • Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 85:131–139

    Article  Google Scholar 

  • Nestel D, Dickschen F, Altieri MA (1994) Seasonal and spatial population loads of a tropical insect—the case of the coffee leaf-miner in Mexico. Ecol Entomol 19(2):159–167

    Article  Google Scholar 

  • Oliveira ACS, Martins SGF, Zacarias MS (2008) Computer simulation of the coffee leaf miner using sexual Penna aging model. Physica A 387:476–484

    Article  Google Scholar 

  • Parra JRP (1985) Biologia comparada de Perileucoptera coffeella (Guérin-Mèneville, 1842) (Lepdoptera, Lyonetiidae) visando ao seu zoneamento ecológico no Estado de São Paulo. Rev Bras Entomol 29(1):45–76

    Google Scholar 

  • Paulini AE (1990) Manejo integrado de pragas do café no Espírito Santo. In: Fernandes OA, Correia ACB, Bortoli SA (eds) Manejo Integrado de Pragas e Nematóides. FUNEP, Jaboticabal, pp 59–80

    Google Scholar 

  • Pereira EJG, Picanço MC, Bacci L, Crespo ALB, Guedes RNC (2007) Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bull Entomol Res 97:421–432

    Article  PubMed  CAS  Google Scholar 

  • Perfecto I, Armbrecht I, Philpott SM, Soto-Pinto L, Dietsch TV (2007) Shaded coffee and the stability of Rainforest margins in Latin America. In: Tscharntke T, Leuschner C, Zeller M, Guhadja E, Bidin A (eds) The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation, Environmental Science Series. Springer, Heidelberg, pp 227–263

  • Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31:369–377

    Article  Google Scholar 

  • Ramiro DA, Guerreiro-Filho O, Queiroz-Voltan RB, Matthiesen SC (2004) Caracterização anatômica de folhas de cafeeiros resistentes e suscetíveis ao bicho-mineiro. Bragantia 63(3):363–372

    Article  Google Scholar 

  • Reis PR, Souza JC (1979) Resistência do bicho-mineiro-do-cafeeiro, Perileucoptera coffeella (Guérin-Mèneville) (Lepdoptera, Lyonetiidae) a baixas temperaturas. In: 7th Congresso Brasileiro de Pesquisas Cafeeiras. Rio de Janeiro

  • Reis PR, Souza JC (1986) Influência das condições do tempo sobre a população de insetos e ácaros. Informe Agropecuário 38(12):25–30

    Google Scholar 

  • Reis PR, Souza JC (1996) Manejo integrado do bicho-mineiro, Perileucoptera coffeella (Guérin-Mèneville) (Lepdoptera, Lyonetiidae) e seus reflexos na produção de café. An Soc Entomol Brasil 25:77–82

    CAS  Google Scholar 

  • Reis PR, Lima JOG, Souza JC (1975) Flutuação populacional do “bicho-mineiro” das folhas do cafeeiro, Perileucoptera coffeella (Lepdoptera, Lyonetiidae), nas regiões cafeeiras do Estado de Minas Gerais e identificação de inimigos naturais. In: 3rd Cong. Bras. Pesq. Cafeeiras. Curitiba, Paraná

  • Reis PR, Souza JC, Venzon M (2002) Manejo ecológico das principais pragas do cafeeiro. Inf Agropecu 214/215(23):83–99

    Google Scholar 

  • Righi CA (2005) Avaliação ecofisiológica do cafeeiro (Coffea arabica L.) em sistema agroflorestal e em monocultivo. Piracicaba. PhD thesis. Universidade São Paulo, Piracicaba

  • Righi CA, Bernardes MS (2008) The potential for increasing rubber production by matching tapping intensity to leaf area index. Agrofor Syst 72(1):1–13

    Article  Google Scholar 

  • Righi CA, Lunz AMP, Bernardes MS, Pereira CR, Dourado-Neto D, Favarin JL (2008) Radiation availability in agroforestry system of coffee and rubber trees. In: Shibu J, Gordon A (eds) Toward agroforestry design: an ecological approach. Series: Advances in Agroforestry, chap. 15. Springer SBM, Dordrecht, pp 249–266

  • Righi CA, Bernardes MS, Lunz AMP, Pereira CR, Camargo FT (2011) Competição por água em um sistema agroflorestal de seringueira e cafeeiro. In: Annals 8th Congresso Brasileiro de Sistemas Agroflorestais. Embrapa, Belém

  • Sampaio LS (2003) Radiação e crescimento de plantas jovens de açaí em sistemas agroflorestais. Piracicaba. PhD thesis. Universidade São Paulo, São Paulo

  • Sentelhas PC, Angelocci LR, Barbieri V, Marin FR, Pereira AR, Villa-Nova NA (1998) Análise dos dados climáticos e do balanço hídrico climatológico de Piracicaba (1917–1997). DFM/ESALQ/USP, Piracicaba

  • Souza JC, Reis PR, Rigitano RLO (1998) Bicho Mineiro do Cafeeiro: Biologia, Danos e Manejo Integrado, 2nd edn. Technical Bulletin 54. EPAMIG, Belo Horizonte

  • Tapley RG (1961) Natural mortality of eggs and early instars of leaf miner. Research report. Lyamungu Coffee Research Station, Coffee Research Services, Tanganyika

  • Teodoro A, Klein AM, Tscharntke T (2008) Environmentally mediated coffee pest densities in relation to agroforestry management, using hierarchical partitioning analyses. Agric Ecosyst Environ 125:120–126

    Article  Google Scholar 

  • Thomaziello RA, Fazuoli LC, Pezzopane JRM, Fahl JI, Carelli MLC, (2000) Café arábica: cultura e técnicas de produção. Boletim Técnico 187. Inst. Agronômico of Campinas, Campinas

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Vega FE, Posada F, Infante F (2006) Coffee insects: ecology and control. In: Pimentel D (ed) Encyclopedia of pest management. Dekker (published online)

  • Velasco E, Verdecia J, Medina R, Rodriguez L (2001) Variaciones en el microclima de un cafetal en dependencia de la exposición a la radiación solar en las condiciones del macizo de la Sierra Maestra. Cult Trop 22:53–59

    Google Scholar 

  • Venzon M, Ciociola AI Jr, Fadini AM, Pallini A, Rosado MC (2005) The potential of Neem Azal for the control of coffee leaf pests. Crop Prot 24:213–219

    Article  CAS  Google Scholar 

  • Villacorta A (1980) Alguns fatores que afetam a população estacional de Perileucoptera coffeella, Guérin-Mèneville, 1842 (Lepidoptera, Lyonetiidae) no Norte do Paraná. An Soc Entomol Brasil 9:23–32

    Google Scholar 

Download references

Acknowledgments

Special thanks to the Fundação de Amparo à Pesquisa do Estado de São Paulo (Foundation for Research Support of the State of São Paulo, or FAPESP) for financial support, and to Prof. Dr. José Dias Costa for his unconditional help. We are also grateful to Prof. Dr. José RP Parra for his corrections and suggestions on this paper, to Prof. Dr. João Luís F Batista for conceptual system analysis, and to Janet W Reid for the language corrections. Furthermore, we thank the kind and accurate suggestions and corrections made by the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Abbud Righi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Righi, C.A., Campoe, O.C., Bernardes, M.S. et al. Influence of rubber trees on leaf-miner damage to coffee plants in an agroforestry system. Agroforest Syst 87, 1351–1362 (2013). https://doi.org/10.1007/s10457-013-9642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-013-9642-9

Keywords

Navigation