Skip to main content

Advertisement

Log in

Identifying key factors affecting coffee leaf rust incidence in agroforestry plantations in Peru

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Coffee leaf rust (CLR), caused by Hemileia vastarix, is one of the most serious diseases of coffee plantations and cause great losses in coffee production. We aimed to examine coffee varieties, shade, age of coffee plants, coffee plant density and soil properties in relation to CLR infection. To do this, we established a total of 75 plots in three agroforestry coffee plantations in the central Peruvian Amazon. We gathered data there in 2011 (dry season) on the presence/absence of CLR; coffee variety; age and density of coffee plants, and also took hemispherical photographs to determine canopy openness. In 2014 (wet season), we again gathered data on the same variables. In 2012, we collected soil samples from a subset of the plots. At all plantations, coffee variety had a significant effect on CLR incidence, with the Catimor variety infected less frequently than Caturra. Coffee plant age had a significant positive effect on CLR incidence. Increasing coffee density also increased CLR incidence for some of the studied plantations/seasons. Comparing those plots from which data were collected in the dry and wet seasons, we found that CLR presence was significantly higher in the wet season. The effect of shade on CLR incidence was not clear. Catimor and Caturra varieties showed opposite trends of CLR incidence in response to shade quantity in most cases (Caturra variety CLR incidence was decreasing with shading increase and Catimor CLR incidence decreasing with decreasing shading). Finally, the soil properties did not affect CLR incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arcila-Pulgarín J, Chaves-Córdoba B (1995) Desarrollo foliar del cafeto en tres densidades de siembra. Cenicafé 46:5–20

    Google Scholar 

  • Avelino J, Rivas G (2013) La roya anaranjada del cafeto, http://hal.archives-ouvertes.fr/hal-01071036, p 47

  • Avelino J, Savary S (2002) Rational and optimized chemical control of coffee leaf rust (Hemileia vastatrix) Plantations, recherche, développement: recherche et caféiculture. CIRAD, Montpellier, pp 134–143

    Google Scholar 

  • Avelino J, Muller RA, Cilas C, Velasco PH (1991) Development and behavior of coffee orange rust (Hemileia vastatrix Berk. and Br.) in plantations undergoing modernization, planted with dwarf varieties in South-East Mexico. Café Cacao Thé 35(1):21–37

    Google Scholar 

  • Avelino J, Seibrt R, Zelaya H, Ordonez M, Merlo A (1998) Enquete-diagnostic sur la rouille orangér du caffeiér Arabica au Honduras. 17th Colloque Scientifique International sur le Café. ASIC, Paris, pp 613–620

    Google Scholar 

  • Avelino J, Willocquet L, Savary S (2004) Effects of crop management patterns on coffee rust epidemics. Plant Pathol 531:541–547

    Article  Google Scholar 

  • Avelino J, Zelaya H, Merlo A, Pineda A, Ordonez M, Savary S (2006) The intensity of a coffee rust epidemic is dependent on production situations. Ecol Model 197(3–4):431–447

    Article  Google Scholar 

  • Avelino J, Cabut S, Barboza B, Barquero M, Alfaro R, Esquivel C, Durand JF, Cilas C (2007) Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 97:1532–1542

    Article  PubMed  Google Scholar 

  • Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L, Bornemann G, Läderach P, Anzueto F, Hruska AJ, Morales C (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–321

    Article  Google Scholar 

  • Bartoń K (2015) MuMIn: multi-model inference. R package version 1.14.0. Available at http://cran.r-project.org/package=%20MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7. Available at http://cran.r-project.org/package=%20lme4

  • Beckschäfer P, Seidel D, Kleinn C, Xu J (2013) On the exposure of hemispherical photographs in forests. iForest 6:228–237

    Article  Google Scholar 

  • Bock KR (1962) Seasonal periodicity of coffee leaf rust and factors affecting the severity of outbreaks in Kenya colony. Trans Br Mycol Soc 45:289–300

    Article  Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Brack AE (2012) Ecología del Perú. Bruno, Lima

    Google Scholar 

  • Brown JS, Whan JH, Kenny MK, Merriman PR (1995) The effect of coffee leaf rust on foliation and yield of coffee in Papua New Guinea. Crop Prot 14 (7):589–592

    Article  Google Scholar 

  • Burdon JJ, Chilvers GA (1982) Host density as a factor in plant disease ecology. Annu Rev Phytopathol 20:143–166

    Article  Google Scholar 

  • Cannell MGR (1975) Crop physiological aspects of coffee bean yields: a review. J Coffee Res 5:7–20

    Google Scholar 

  • Carvalho A, Krug CA, Mendes JET, Antunes F, Junqueira AR, Aloisi J, Rocha TR, Moraes MV (1961) Melhoramento do caggeiro. Bragantia 20:1045–1142

    Article  Google Scholar 

  • Costantini EA (2009) Manual of methods for soil and land evaluation. Science, Enfield, p 564

    Book  Google Scholar 

  • Coutinho TA, Rijkenberg FHJ, van Asch MAJ (1994) The effect of leaf age on infection of Coffea genotypes by Hemileia vastatrix. Plant Pathol 43(1):97–103

    Article  Google Scholar 

  • Eskes AB (1982) The effect of light intensity on incomplete resis- tance of coffee to Hemileia vastatrix. Neth J Plant Pathol 88:191–202

    Article  Google Scholar 

  • Eskes AB, Toma-Braghini M (1982) The effect of leaf age on incomplete resistance of coffee to Hemileia vastarix. Neth. J. Planth Pathol 88:219–230

    Article  Google Scholar 

  • Gálvez GC, Flores MJ, Portillo D (1980) Determinación de razas fisiológicas de roya del cafeto (Hemileia vastatrix Berk. & Br.) en El Salvador. Boletín Técnico 4:1–10

    Google Scholar 

  • Gonsamo A, Walter JM, Pellikka P (2011) CIMES: a package of programs for determining canopy geometry and solar radiation regimes through hemispherical photographs. Comput Electron Agric 79:207–215

    Article  Google Scholar 

  • Greenberg R, Rice RA (1999) Manual de café bajo sombra y biodiversidad en el Perú. Centro de Aves Migratorias Smitsonian Institution, Washington, p 52

    Google Scholar 

  • Hamlin CH, Salick J (2003) Yanesha agriculturein the upper Peruvian Amazon: persistence and change fifteen years down. Econ Bot 57:163–180

    Article  Google Scholar 

  • Holguín F (1985) Epidemiología de la roya del cafeto bajo diferentes condiciones ecológicas. 2 Reunión Regional del PROMECAFE sobre el Control de la Roya del Cafeto. IICA, Tegucigalpa, pp 150–158

    Google Scholar 

  • Junta Nacional del Café [JNC] (Peruvian National Board of Coffee) (2014) Plan Nacional de Renovación de Cafetales

  • Kushalappa AC (1989) Advences in coffee rust researche. Ann Rev Phytopathol 27:503–531

    Article  Google Scholar 

  • Kushalappa AC, Akutsu M, Ludwig A (1983) Aplication of survival ratio for monocyclic process of Hemileia vastrix in predicting coffee rust infection rates. Phytopathology 73:96–103

    Article  Google Scholar 

  • Lamouroux N et al (1995) The Coffea arabica Fungal Pathosystem in New Caledonia: interactions at Two Different Spatial Scales. J Phytopathology 413:403–413

    Article  Google Scholar 

  • Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric Meteorol 144:85–94

    Article  Google Scholar 

  • López-Bravo DF, Virginio-Filho EDM, Avelino J (2012) Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Prot 38:21–29

    Article  Google Scholar 

  • Matovu RJ, Kangire A, Phiri NA, Hakiza GJ, Kagezil GH, Musoli PC (2013) Ecological factors influencing incidence and severity of coffee leaf rust and coffee berry disease in major Arabica coffee growing districts of Uganda. Uganda J Agri Sci 14:87–100

    Google Scholar 

  • Michéli E, Schad P, Spaargaren O, Dent D, Nachtergale F (2006) World reference baser for soil resources. World Soil Resources Reports 103. Food and Agricultural Organization of the United Nations, Rome

  • Moguel P, Toledo VM (1999) Biodiversity conservation in traditional coffee systems of Mexico. Conserv Biol 13:11–21

    Article  Google Scholar 

  • Monterroso D (1999) Interacción patosistema-sombra en el sistema café. Actas de la IV Semana Científica. CATIE, Turrialba, pp 156–161

    Google Scholar 

  • Muller RA (1975) L’irrigation précoce, assurance pour une production régulière de haut niveau du caféier Arabica. Café Cacao Thé 19(2):95–122

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Noponen MR, Haggar JP, Edwards-Jones G, Healey JR (2013) Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agric Syst 119:1–9

    Article  Google Scholar 

  • Nutman FJ, Roberts FM, Bock KR (1960) Methods of uredospore dispersal of the coffee leaf rust fungus, Hemileia vastatrix. Trans Br Mycological Soc 43(3):509–515

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Package ´vegan´, Community Ecology Package. R package version 2.3-5. https://cran.r-project.org/web/packages/vegan/vegan.pdf

  • Pellegrin F, Nandris D, Waestrelin S, Kohler F (1995) Situation pathologique des Arabica en Nouvelle.Calédonie, Corrélations entre pathogenese et environnement. In: Proceedings of the 16th Colloque Scientifique International sul le Café. ASIC, Paris, 690–698

  • Perfecto I, Rice RA, Greenbergr R, Van der Voort ME (1996) Shade coffee: disappearing refuge for biodiversity. Bioscience 46:596–608

    Article  Google Scholar 

  • Ponce MG, et al (2008) Plan de Desarollo Concentrado de Villa Rica 2009–2018. Municipalisas distrital de Villa Rica, provincia Oxapampa – Región Pasco

  • Prakash NS, Marques DV, Varzea VMP, Silva MC, Combes MC, Lashermes P (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org

  • Rayner RW (1961) Germination and penetration studies of coffee rust (Hemileia vastarix B. and Br.). Ann. Appl. Biol. 49:497–505

    Article  Google Scholar 

  • Ribeiro IJA, Monaco LC, Tisseli Filho O, Sugimori MH (1978) Efeito de alta temperatura no desenvolvimento de Hemileia vastatrix em cafeeiro suscetivel. Bragantia 37:11–16

    Article  Google Scholar 

  • Rice RA, Ward J (1996) Coffee, conservation and commerce in the western hemisphere. The Smithsonian Migratory Bird Center and the Natural Resources Defense Council, Washington, p 40

    Google Scholar 

  • Rice RA, Ward J (2008) Agricultural intensification within agroforestry: the case of coffee and wood products. Agr Ecosyst Environ 128:212–218

    Article  Google Scholar 

  • Salgado BG, Macedo RLG, Carvalho VLD, Salgado M, Venturin N (2007) Progress of rust and coffee plant cercosporiose mixed with grevilea, with ingazeiro and in the full sunshine in Lavras—MG. Cienc Agrotecnol 31(4):1067–1074

    Article  Google Scholar 

  • Santacreo R, Reyes E, Oseguera S (1983) Estudio del desarrollo de la roya del cafeto Hemileia vastatrix Berk. & Br. y su relación con factores biológicos y climáticos en condiciones de campo en dos zonas cafetaleras de Honduras, C.A., in: VI Simposio Latinoamericano sobre Caficultura, IICA: Panamá, Panamá. pp 199–213

  • Siebert SF (2002) From shade- to sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodivers Conserv 11:1889–1902

    Article  Google Scholar 

  • Siles P, Harmand JM, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78:269–286

    Article  Google Scholar 

  • Silva C, Várzea V, Guerra-guimarães L (2006) Coffee resistance to the main diseases: leaf rust and coffee berry disease. Braz J Plant Physiol 18(1):119–147

    Article  CAS  Google Scholar 

  • Smith ESC (1981) The interrelationships between shade types and cocoa pest and disease problems in Papua New Guinea. In Beer J (1987) Advantages, disadvantages and desirable characteristics of shade trees for coffee, cocoa and tea. Agrofor Syst 5:3–13

    Google Scholar 

  • Soto-Pinto L, Perfecto I, Caballero-Nieto J (2002) Shade over coffee: its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agrofor Syst 55:37–45

    Article  Google Scholar 

  • Staver C, Guharay F, Monterroso D, Muschler RG (2001) Designing pest-suppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agrofor Syst 53:151–170

    Article  Google Scholar 

  • Wintgens JN (2004) Coffee: growing, processing, sustainable production (monografie). WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, p 983

    Book  Google Scholar 

  • Yuan T (1958) Determination of exchangeable hydrogen in soils by a titration method. Florida Agric Exp Stat Soil Sci 88:164–167

    Google Scholar 

  • Zambolim L, Silva-Acuña R, Do Vale FXR, Chaves GM (1992) Influencia da produção do cafeeiro sobre o desenvolvimento da ferrugem (Hemileia vast- atrix). Fitopatologia Brasileira 17:32–35

    Google Scholar 

Download references

Acknowledgements

This study was supported mainly by the POPRAR project [CZ.1.07/2.2.00/28.0303] of the Faculty of Forestry and Wood Technology, Mendel University in Brno and by the company MapGeosolution. The authors are grateful to the Marín, Carrillo and Torre families and to Ms. Selena Contreras for their help and for letting us conduct this study on their plantations. Special thanks also to Petr Kupec, the chief manager of the POPRAR project, to Jorge Mattos, the director of MapGeosolution and also to Jonathan Rosenthal for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Ehrenbergerová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrenbergerová, L., Kučera, A., Cienciala, E. et al. Identifying key factors affecting coffee leaf rust incidence in agroforestry plantations in Peru. Agroforest Syst 92, 1551–1565 (2018). https://doi.org/10.1007/s10457-017-0101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0101-x

Keywords

Navigation