Skip to main content
Log in

Effect of planetary ball milling process parameters on the nitrogen adsorption properties of multiwall carbon nanotubes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The dependence of multiwall carbon nanotube (MWCNT) length distribution and some nitrogen derived morphological descriptors on various planetary ball milling process parameters was investigated. Ball milling was found to cut nanotubes into smaller pieces, narrow their length distribution and increase their specific surface area and surface fractal dimension. Typical length reduction was from 1300 to 200 nm, specific surface area increase from 160 to 340 m2g−1 and surface fractal dimension increase from 2.47 to 2.70. The pore size distribution of pristine MWCNTs exhibited a mesoporous character dominated by intertube channels. A sharp maximum appeared at d = 3.6 nm diameter when the milling power was increased. This increase was attributed to the opening of intratube voids. Processes involving graphitic platelet detachment, tube wall amorphization or carbonaceous debris accumulation appear to play only minor roles under the studied experimental conditions of planetary milling. Control over the morphology of the milled material is best achieved by varying the diameter and the mass ratio of the grinding balls as well as the classical process parameters like disk rotational speed, milling time and number of balls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdellaoui, M., Rahouadj, R., Gaffet, E.: Optimisation of the mechanical shock transfer in a modified horizontal rod mill. Mater. Sci. Forum 225, 255–260 (1996)

    Google Scholar 

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  • Chattopadhyay, P.P., Mannaa, I., Talapatra, S., Pabi, S.K.: A mathematical analysis of milling mechanics in a planetary ball mill. Mater. Chem. Phys. 68, 85–94 (2001)

    Article  CAS  Google Scholar 

  • Esawi, A.M.K., Morsi, K., Sayed, A., Gawad, A.A., Borah, P.: Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. A 508, 167–173 (2009)

    Article  Google Scholar 

  • Gao, B., Bower, C., Lorentzen, J.D., Fleming, L., Kleinhammes, A., Tang, X.P., et al.: Enhanced saturation lithium composition in ballmilled single-walled carbon nanotubes. Chem. Phys. Lett. 327, 69–75 (2000)

    Article  CAS  Google Scholar 

  • Huang, H., Pan, J., McCormick, P.G.: Prediction of impact forces in a vibratory ball mill using an inverse technique. Int. J. Impact Eng 19, 117–126 (1997)

    Article  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  • Kanyó, T., Kónya, Z., Kukovecz, A., Berger, F., Dékány, I., Kiricsi, I.: Quantitative characterization of hydrophilic-hydrophobic properties of MWNTs surfaces. Langmuir 20, 1656–1661 (2004)

    Article  Google Scholar 

  • Kavan, L., Dunsch, L., Kataura, H.: Electrochemical tuning of electronic structure of carbon nanotubes and fullerene peapods. Carbon 42, 1011–1019 (2004)

    Article  CAS  Google Scholar 

  • Kim, Y.A., Hayashi, T., Fukai, Y., Endo, M., Yanagisawa, T., Dresselhaus, M.S.: Effect of ball milling on morphology of cupstacked carbon nanotubes. Chem. Phys. Lett. 355, 279–284 (2002)

    Article  CAS  Google Scholar 

  • Kiss, E.E., Boskovic, G.C.: Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts. Process Appl Ceram 6, 173–182 (2012)

    Article  CAS  Google Scholar 

  • Kukovecz, A., Konya, Z.: Mechanichemistry of carbon nanotubes. In: Basiuk, V.A. (ed.) Chemistry of carbon nanotubes, pp. 237–254. American Scientific Publishers, Cambridge (2008)

    Google Scholar 

  • Kukovecz, A., Konya, Z., Naragaju, N., Willems, I., Tamasi, A., Fonseca, A., Nagy, J.B., Kiricsi, I.: Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas. Phys. Chem. Chem. Phys. 2, 3071–3076 (2000)

    Article  CAS  Google Scholar 

  • Kukovecz, A., Kanyó, T., Kónya, Z., Kiricsi, I.: Long-time low-impact ball milling of multiwall carbon nanotubes. Carbon 43, 994–1000 (2005)

    Article  CAS  Google Scholar 

  • Li, Y.B., Wei, B.Q., Liang, J., Yu, Q., Wu, D.H.: Transformation of carbon nanotubes to nanoparticles by ball milling process. Carbon 37, 493–497 (1999)

    Article  CAS  Google Scholar 

  • Liu, F., Zhang, X., Cheng, J., Tu, J., Kong, F., Huang, W., et al.: Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon 41, 2527–2532 (2003)

    Article  CAS  Google Scholar 

  • Munoz, E., Ruiz-Gonzalez, M.L., Seral-Ascaso, A., Sanjuan, M.L., Gonzalez-Calbet, J.M., Laguna, M., de la Fuente, G.F.: Tailored production of nanostructured metal/carbon foam by laser ablation of selected organometallic precursors. Carbon 48, 1807–1814 (2010)

    Article  CAS  Google Scholar 

  • Nouni, N., Ziaei-Rad, S., Adibi, S., Karimzadeh, F.: Fabrication and mechanical property prediction of carbon nanotube reinforced Aluminum nanocomposites. Mater. Des. 34, 1–14 (2012)

    Article  Google Scholar 

  • Pfeifer, P., Wu, Y.J., Cole, M.W., Krim, J.: Multilayer adsorption on a fractally rough surface. Phys. Rev. Lett. 62, 1997–2000 (1989)

    Article  CAS  Google Scholar 

  • Pierard, N., Fonseca, A., Konya, Z., Willems, I., Van Tendeloo, G., B.Nagy, J.: Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1–8 (2001)

    Article  CAS  Google Scholar 

  • Rigby, S.P., Chigada, P.I., Perkins, E.L., Watt-Smith, M.J., Lowe, J.O., Edler, K.J.: Fundamental studies of gas sorption within mesopores situated amidst an inter-connected, irregular network. Adsorption 14, 289–307 (2008)

    Article  CAS  Google Scholar 

  • Tang, P., Chew, N.Y.K., Chan, H.K., Raper, J.A.: Limitations of determination of surface fractal dimension using N2 adsorption isotherms and modified Frenkel–Halsey–Hill theory. Langmuir 19, 2632–2638 (2003)

    Article  CAS  Google Scholar 

  • Wang, Y., Wu, J., Wei, F.: A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41, 2939–2948 (2003)

    Article  CAS  Google Scholar 

  • Watanabe, R., Hashimoto, H., Lee, G.G.: Computer-simulation of milling ball motion in mechanical alloying. Mater. Trans. JIM 36, 102–109 (1995)

    CAS  Google Scholar 

  • Zubizarreta, L., Gomez, E.I., Arenillas, A., Ania, C.O., Parra, J.B., Pis, J.J.: H2 storage in carbon materials. Adsorption 14, 557–566 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the OTKA 106234, TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0060 Projects and the EC FP7 INCO “NAPEP” network is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Kukovecz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, I.Z., Kozma, G., Puskás, R. et al. Effect of planetary ball milling process parameters on the nitrogen adsorption properties of multiwall carbon nanotubes. Adsorption 19, 687–694 (2013). https://doi.org/10.1007/s10450-013-9493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9493-8

Keywords

Navigation