Skip to main content
Log in

Droplet formation behavior in a microfluidic device fabricated by hydrogel molding

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We describe the behavior of droplet formation within 3D cross-junctions and 2D T-junctions with various cross-sectional geometries that were manually fabricated using the hydrogel-molding method. The method utilizes wire-shaped hydrogels as molds to construct 3D and 2D microchannel structures. We investigated the flow patterns and droplet formation within the microchannels of these microfluidic devices. Despite being fabricated manually, the microchannels with 3D cross-junctions and 2D T-junctions were reproducible and formed highly monodispersed droplets. Additionally, the sizes of the droplets formed within the microchannels could be predicted using an experimental formula. This technique of droplet formation involves the use of a device fabricated by hydrogel molding. This method is expected to facilitate studies on droplet microfluidics and promote the use of droplet-based lab-on-a-chip technologies for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aketagawa K, Hirama H, Torii T (2013) Hyper-miniaturisation of monodisperse janus hydrogel beads with magnetic anisotropy based on coagulation of Fe3O4 nanoparticles. J Mater Sci Chem Eng 1(2):1–5. doi:10.4236/msce.2013.12001

    Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364. doi:10.1063/1.1537519

    Article  Google Scholar 

  • Chan EM, Alivisatos AP, Mathies RA (2005) High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. J Am Chem Soc 127(40):13854–13861. doi:10.1021/Ja051381p

    Article  Google Scholar 

  • Choi WK, Lebrasseur E, Al-Haq MI, Tsuchiya H, Torii T, Yamazaki H, Shinohara E, Higuchi T (2007) Nano-liter size droplet dispenser using electrostatic manipulation technique. Sens Actuator A-Phys 136(1):484–490. doi:10.1016/j.sna.2006.12.028

    Article  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446. doi:10.1039/B510841a

    Article  Google Scholar 

  • Hirama H, Odera T, Torii T, Moriguchi H (2012) A lithography-free procedure for fabricating three-dimensional microchannels using hydrogel molds. Biomed Microdevices 14(4):689–697. doi:10.1007/s10544-012-9649-4

    Article  Google Scholar 

  • Hirama H, Kambe T, Aketagawa K, Ota T, Moriguchi H, Torii T (2013) Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface. Langmuir 29(2):519–524. doi:10.1021/la303827u

    Article  Google Scholar 

  • Kawakatsu T, Kikuchi Y, Nakajima M (1996) Visualization of microfiltration phenomena using microscope video system and silicon microchannels. J Chem Eng Jpn 29(2):399–401

    Article  Google Scholar 

  • Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fukita H (2002) Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE J 48(8):1639–1644. doi:10.1002/aic.690480807

    Article  Google Scholar 

  • Kobayashi I, Mukataka S, Nakajima M (2004a) CFD simulation and analysis of emulsion droplet formation from straight-through microchannels. Langmuir 20(22):9868–9877. doi:10.1021/La0487489

    Article  Google Scholar 

  • Kobayashi I, Mukataka S, Nakajima M (2004b) Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. J Colloid Interface Sci 279(1):277–280. doi:10.1016/j.jcis.2004.06.028

    Article  Google Scholar 

  • Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys Fluids. doi:10.1063/1.3081407

    Google Scholar 

  • Lee M, Park W, Chung C, Lim J, Kwon S, Ahn KH, Lee SJ, Char K (2010) Multilayer deposition on patterned posts using alternating polyelectrolyte droplets in a microfluidic device. Lab Chip 10(9):1160–1166. doi:10.1039/B919753b

    Article  Google Scholar 

  • Liu HH, Zhang YH (2009) Droplet formation in a T-shaped microfluidic junction. J Appl Phys. doi:10.1063/1.3187831

    Google Scholar 

  • Muluneh M, Issadore D (2013) Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets. Lab Chip. doi:10.1039/c3lc50979f

    Google Scholar 

  • Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127(22):8058–8063. doi:10.1021/ja042494w

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2(1):24–26. doi:10.1039/b108740c

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101(1–3):23–29. doi:10.1016/j.cej.2003.11.019

    Article  Google Scholar 

  • Nisisako T, Ando T, Hatsuzawa T (2012) High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip 12(18):3426–3435. doi:10.1039/c2lc40245a

    Article  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908. doi:10.1021/la0480336

    Article  Google Scholar 

  • Samie M, Salari A, Shafii MB (2013) Breakup of microdroplets in asymmetric T junctions. Phys Rev E. doi:10.1103/PhysRevE.87.053003

    MATH  Google Scholar 

  • Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765. doi:10.1039/c1lc20514e

    Article  Google Scholar 

  • Stone HA, Bentley BJ, Leal LG (1986) An experimental-study of transient effects in the breakup of viscous drops. J Fluid Mech 173:131–158. doi:10.1017/S0022112086001118

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17(18):5562–5566. doi:10.1021/La010342y

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. doi:10.1126/science.1109164

    Article  Google Scholar 

  • Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluidics 5(6):711–717. doi:10.1007/s10404-008-0306-4

    Article  Google Scholar 

  • Yeom S, Lee SY (2011) Dependence of micro-drop generation performance on dispenser geometry. Exp Therm Fluid Sci 35(8):1565–1574. doi:10.1016/j.expthermflusci.2011.07.008

    Article  Google Scholar 

  • Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C (2012) One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 335(6069):690–694. doi:10.1126/science.1215416

    Article  Google Scholar 

  • Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of in microfluidic channels alternating composition and applications to indexing of concentrations in droplet-based assays. Anal Chem 76(17):4977–4982. doi:10.1021/ac0495743

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotada Hirama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odera, T., Hirama, H., Kuroda, J. et al. Droplet formation behavior in a microfluidic device fabricated by hydrogel molding. Microfluid Nanofluid 17, 469–476 (2014). https://doi.org/10.1007/s10404-013-1327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1327-1

Keywords

Navigation