Skip to main content
Log in

Electroosmotic flows with simultaneous spatio-temporal modulations in zeta potential: cases of thick electrical double layers beyond the Debye Hückel limit

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We devise a mathematical model for analyzing the effects of spatio-temporal perturbations in zeta potential on electroosmotic transport in narrow fluidic confinements, considering thick electrical double layer limits. The spatial perturbations in zeta potential may be attributed to surface charge patterning, either designed or manifested as a natural artifact of the surface inhomogeneities. The time-dependent variations in zeta potential, as considered in this work, may stem from the temporal perturbations in the bulk ionic concentrations in the end-channel reservoirs or ‘wells’. Overcoming the simplifications routinely employed in the literature, we develop here an improved analytical formalism, without imposing any constraints on the magnitude of the zeta potential. Using these solutions, we highlight the possibilities of obtaining designed rotationalities in the flow structure with simultaneous spatial variations in the zeta potential and temporal variations in the well concentrations. We show that such combinations of spatial and temporal variations, in effect, render the flow system to be capable of shedding vortex structures that are not otherwise obtainable with spatial variations in zeta potential alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajdari A (1995) Electro-osmosis on inhomogeneously charge surfaces. Phys Rev Lett 75:755

    Article  Google Scholar 

  • Ajdari (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys Rev E 53:4996–5005

  • Anderson JL, Idol WK (1985) Electrosmosis through the pores of non-uniformly charged walls. Chem Eng Commun 38:93–106

    Article  Google Scholar 

  • Anderson JR, Chiu DT, Jackman RJ, Cherniavskaya O, Mcdonald JC, Wu H, Whitesides SH, Whitesides GM (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164

    Article  Google Scholar 

  • Bahga SS, Vinogradova OI, Bazant MZ (2010) Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J Fluid Mech 644:245–255

    Article  MATH  Google Scholar 

  • Baldessari F, Santiago JG (2008) Electrokinetics in nanochannels Part I. Electric double layer overlap and channel-to-well equilibrium. J Colloid Interf Sci 325:526–538

    Article  Google Scholar 

  • Barkar SLR, Ross D, Tarlov MJ, Gaitan M, Locascio LE (2000) Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Anal Chem 72:5925–5929

    Article  Google Scholar 

  • Behrens SH, Borkovec M (1999) Exact Poisson–Boltzmann solution for the interaction of dissimilar charge-regulating surfaces. Phys Rev E 60:7040–7048

    Article  Google Scholar 

  • Chakraborty S (2006) Augmentation of peristaltic microflows through electroosmotic mechanisms. J Phys D 39:5356–5363

    Google Scholar 

  • Chakraborty S, Paul D (2006) Microchannel flow control through a combined magnetoelectro-hydrodynamic transport. J Phys D 39:5364–5371

    Google Scholar 

  • Chakraborty S, Srivastava AK (2007) A generalized model for time periodic electroosmotic flows with overlapping electrical double layers. Langmuir 23:12421–12428

    Google Scholar 

  • Chakraborty S, Das S (2008) Streaming-field induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye–Hückel limit. Phys Rev E 77:037303

    Article  Google Scholar 

  • Chakraborty J, Chakraborty S (2010) Influence of streaming potential on the elastic response of a compliant microfluidic substrate subjected to dynamic loading. Phys Fluids 22:122002(1–9)

  • Chakraborty J, Chakraborty S (2011) Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing. Phys Fluids 23:082004(1–9)

  • Conlisk AT (2005) The Debye–Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Electrophoresis 26:1896–1912

    Article  Google Scholar 

  • Conlisk AT, McFerran J (2002) Mass transfer and flow in electrically charged micro- and nanochannels. Anal Chem 74:2139–2150

    Article  Google Scholar 

  • Das S, Chakraborty S (2008) Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements. Electrophoresis 29:1115–1124

    Google Scholar 

  • Das S, Chakraborty S (2009) Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subject to particle-wall interactions. Langmuir 25:9863–9872

    Google Scholar 

  • Das S, Chakraborty S (2010) Effect of conductivity variations within the electric double layer on streaming potential estimation in narrow fluidic confinements. Langmuir 26:11589–11596

    Google Scholar 

  • Das S, Chakraborty S (2011) Steric-effect-induced enhancement of electrical-doublelayer overlapping phenomena. Phys Rev E 84:012501

    Google Scholar 

  • Datta S, Ghoshal S (2008) Dispersioon due to wall interactions in microfluidic separation systems. Phys Fluids 20:012103

    Article  Google Scholar 

  • Datta S, Ghoshal S, Patankar NA (2006) Electro-osmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory. Electrophoresis 27:611–619

    Article  Google Scholar 

  • Everaerts FM, Verheggen TPEM, Van De Venne JLMJ (1976) Isotachophoretic experiments with a counter flow of electrolyte. J Chromatogr A 123:139–148

    Article  Google Scholar 

  • Garai A, Chakraborty S (2010) Steric effect and slip modulated energy transfer in narrow fluidic channels with finite aspect ratios. Electrophoresis 31:843–849

    Google Scholar 

  • Ghoshal S (2002) Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128

    Google Scholar 

  • Ghoshal S (2003) The effect of wall interactions on capillary zone electrophoresis. J Fluid Mech 491:285–300

    Article  Google Scholar 

  • Ghoshal S (2004) Fluid mechanics of electro-osmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25:214–228

    Article  Google Scholar 

  • Goswami P, Chakraborty S (2010) Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir 26:581–590

    Google Scholar 

  • Goswami P, Chakraborty S (2011) Semi-analytical solutions for electroosmotic flows with interfacial slip in microchannels of complex cross sectional shapes. Microfluid Nanofluid 11:255–267

    Google Scholar 

  • Hayes MA, Ewing AG (1992) Electroosmotic flow control and monitoring with an applied radial voltage for capillary zone electrophoresis. Anal Chem 64:512–516

    Article  Google Scholar 

  • Herr AE, Molho JI, Santiago JG, Mungal MG, Keny TW (2000) Electroosmotic capillary flow with nonuniform zeta potential. Anal Chem 72:1053–1057

    Article  Google Scholar 

  • Jakeway SC, De Mello AJ, Russel EL, Fresen J (2000) Miniaturized total analysis systems for biological analysis. Anal Chem 366:525–539

    Article  Google Scholar 

  • Karnik R, Duan C, Castelino K, Daiguji H, Majumdar A (2007) Rectification of ionic current in a nanofluidic diode. Nanoletters 7:547–551

    Article  Google Scholar 

  • Keely CA, Holloway RR, Van De Goor TAAM, McManigill DJ (1993) Dispersion in capillary electrophoresis with external flow control methods. Chromatogr. A 652:283–288

    Google Scholar 

  • Khair AS, Squires TM (2008a) Fundamental aspects of concentration polarization arising from non-uniform electrokinetic transport. Phys Fluids 20:087102

    Article  Google Scholar 

  • Khair AS, Squires TM (2008b) Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity. J Fluid Mech 615:323–334

    Article  MATH  Google Scholar 

  • Lambert WJ, Middleton DL (1990) pH hysterisis effect with silica capillaries in capillary zone electrophoresis. Anal Chem 62:1585–1587

    Article  Google Scholar 

  • Lee CS, Blanchard WC, Wu CT (1990) Direct control of the electroosmosis in capillary zone electrophoresis by using an external electric field. Anal Chem 62:1550–1552

    Google Scholar 

  • Li D (2005) Electrokinetics in microfluidics. Elsevier, Amsterdam

  • Liu Y, Fanguy JC, Bledsoe JM, Henry CS (2000) Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips. Anal Chem 72:5939–5944

    Article  Google Scholar 

  • Lukacs KD, Jorgeonson JW (1985) Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation. J High Resolut Chromatogr Chromatogr Commun 8:407–411

    Article  Google Scholar 

  • Manz A, Bessoth F, Kopp MU (1998) Proceedings of μTAS ‘98, Banff, Canada, October 13–16 1998, pp 235–240

  • Munshi F, Chakraborty S (2009) Hydro-electrical energy conversion in narrow confinements in presence of transverse magnetic fields with electrokinetic effects. Phys Fluids 21:122003(1–9)

  • Nashabeh W, El Rassi ZJ (1992) Coupled fused silica capillaries for rapid capillary zone electrophoresis of proteins. High Resolut Chromatogr 15:289–292

    Article  Google Scholar 

  • Pal D, Chakraborty S (2011) An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements. Electrophoresis 32:638–645

    Google Scholar 

  • Probstein R (1994) Physicochemical hydrodynamics. Wiley, New York

    Book  Google Scholar 

  • Ramos A, Morgan H, Green NG, Gonzalez A, Castellanos A (2005) Pumping of liquids with travelling wave electrosmosis. J Appl Phys 97:084906(1–8)

  • Richter A, Plettner A, Hofmann KA, Sandmaier H (1991) A micromachined electrohydrodynamic (EHD) pump. Sens Actuators A 29:159–168

    Article  Google Scholar 

  • Srivastava A, Chakraborty S (2010) Time periodic electroosmotic flow between oscillating boundaries in narrow confinements. Int J Adv Eng Sci Appl Math 2:61–73

    Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901(1–4)

    Google Scholar 

  • Stroock AD, Weck M, Chiu DT, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84(15):3314–3317

    Article  Google Scholar 

  • Talapatra S, Chakraborty S (2008) Double layer overlap in AC-electroosmosis. Eur J Mech B Fluid 27:297–308

    Google Scholar 

  • Talapatra S, Chakraborty S (2009) Squeeze-flow electroosmotic pumping between charged parallel plates. Int J Fluid Mech Res 36:460–472

    Google Scholar 

  • Towns JK, Regnier FE (1991) Capillary electrophoretic separations of proteins using nonionic surfactant coatings. Anal Chem 63:1126–1132

    Article  Google Scholar 

  • Whitesides GM, Stroock AD (2000) Flexible Methods for microfluidics. Phys Today 54:42–48

    Article  Google Scholar 

  • Yariv E (2004) Electro-osmotic flow near a surface charge discontinuity. J Fluid Mech 521:181

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Appendices

Appendix A: Derivation of different order perturbation terms (Table 1)

Using end-channel well modeling of nanochannel flow and under the assumption of electrically neutral end-channel wells we obtained the modified PB equation for nanochannels as

$$ \alpha \varepsilon^{2} \left( {\varepsilon_{1}^{2} \frac{{\partial^{2} \psi }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi }}{{\partial y^{2} }}} \right) = \frac{{n_{ - w} \exp (\alpha \psi ) - n_{ + w} \exp ( - \alpha \psi )}}{{2n_{0} }} $$
$$ \Rightarrow \alpha \varepsilon^{2} \left( {\varepsilon_{1}^{2} \frac{{\partial^{2} \psi }}{{\partial x^{2} }} + \frac{{\partial^{2} \psi }}{{\partial y^{2} }}} \right) = \sinh (\alpha \psi ) + \varepsilon_{1} \left( {\frac{{n_{ - w}^{(1)} }}{{2n_{0} }}\exp (\alpha \psi ) - \frac{{n_{ + w}^{(1)} }}{{2n_{0} }}\exp ( - \alpha \psi )} \right) + O(\varepsilon_{1}^{2} ) $$
$$ n_{w} = n_{w}^{(0)} + \varepsilon_{1} n_{ \pm w}^{(1)} + \varepsilon_{1}^{2} n_{ \pm w}^{(2)} + \cdots , $$
$$ \psi = \psi^{(0)} + \varepsilon_{1} \psi^{(1)} + \varepsilon_{1}^{2} \psi^{(2)} + \cdots $$
$$ \alpha \varepsilon^{2} \left( {\frac{{\partial^{2} \psi^{(0)} }}{{\partial y^{2} }} + \varepsilon_{1} \frac{{\partial^{2} \psi^{(1)} }}{{\partial y^{2} }} + O(\varepsilon_{1}^{2} )} \right) = T_{1} + \varepsilon_{1} T_{2} + O(\varepsilon_{1}^{2} ) $$
$$ T_{1} = \sinh (\alpha \psi^{(0)} + \varepsilon_{1} \alpha \psi^{(1)} + \varepsilon_{1}^{2} \alpha \psi^{(2)} + \cdots ) = \sinh (\alpha \psi^{(0)} ) + \varepsilon_{1} \{ \alpha \psi^{(1)} \cosh (\alpha \psi^{(0)} )\} + O(\varepsilon_{1}^{2} ) $$
$$ \begin{aligned} T_{2} = & \left( {\frac{{n_{ - w}^{(1)} }}{{2n_{0} }}\exp (\alpha (\psi^{(0)} + \varepsilon_{1} \psi^{(1)} + \varepsilon_{1}^{2} \psi^{(2)} + \cdots )) - \frac{{n_{ + w}^{(1)} }}{{2n_{0} }}\exp ( - \alpha (\psi^{(0)} + \varepsilon_{1} \psi^{(1)} + \varepsilon_{1}^{2} \psi^{(2)} + \cdots ))} \right) \\ = & k_{2} \sinh (\alpha \psi^{(0)} + \varepsilon_{1} \alpha \psi^{(1)} + \varepsilon_{1}^{2} \alpha \psi^{(2)} + \cdots ) + k_{3} \cosh (\alpha \psi^{(0)} + \varepsilon_{1} \alpha \psi^{(1)} + \varepsilon_{1}^{2} \alpha \psi^{(2)} + \cdots ) \\ = & k_{2} \sinh (\alpha \psi^{(0)} ) + k_{3} \cosh (\alpha \psi^{(0)} ) + O(\varepsilon_{1} ) \\ \end{aligned} $$

Hence the differential equations governing the 0th and 1st order solutions are

$$ \alpha \varepsilon^{2} \left( {\frac{{\partial^{2} \psi^{(0)} }}{{\partial y^{2} }}} \right) = \sinh (\alpha \psi^{(0)} )\quad {\text{and}} $$
$$ \alpha \varepsilon^{2} \frac{{\partial^{2} \psi^{(1)} }}{{\partial y^{2} }} = \alpha \left( {\psi^{(1)} + \frac{{k_{3} }}{\alpha }} \right)\cosh (\alpha \psi^{(0)} ) + k_{2} \sinh (\alpha \psi^{(0)} )\,{\text{respectively,}} $$

where \( k_{2} = \frac{{n_{ - w}^{(1)} + n_{ + w}^{(1)} }}{{2n_{w}^{(0)} }},k_{3} = \frac{{n_{ - w}^{(1)} - n_{ + w}^{(1)} }}{{2n_{w}^{(0)} }} \)

Appendix B: Derivation of Eq. I (Table 1) and Eq. 16

We begin with the differential equation governing the zeroth order potential variation in thick EDL limit:

$$ \alpha \varepsilon^{2} \left( {\frac{{\partial^{2} \psi^{(0)} }}{{\partial y^{2} }}} \right) = \sinh (\alpha \psi^{(0)} ) $$
(25)

Defining \( Y = \frac{y}{\varepsilon } \), we get

$$ \alpha \left( {\frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}} \right) = \sinh (\alpha \psi^{(0)} ) $$
(26)

Multiplying both sides by \( \alpha \frac{{{\text{d}}\psi^{(0)} }}{{{\text{d}}Y}} \) and integrating, we get

$$ \frac{{{\text{d(}}\alpha \psi^{(0)} )}}{{{\text{d}}Y}} = \sqrt {2(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))} $$
(27)

Integrating once again and using the definition of Elliptic integral of first kind given in Appendix C, we get

$$ \frac{y}{\varepsilon } = \sqrt m \left\{ {F\left( {\frac{{i\alpha \psi^{(0)} }}{2}, - m} \right) - F\left( {\frac{i\alpha }{2}, - m} \right)} \right\} $$
(28)

Let us now consider the differential equation governing the first order potential variation in thick EDL limit:

$$ \alpha \varepsilon^{2} \frac{{\partial^{2} \psi^{(1)} }}{{\partial y^{2} }} = \alpha \left( {\psi^{(1)} + \frac{{k_{3} }}{\alpha }} \right)\cosh (\alpha \psi^{(0)} ) + k_{2} \sinh (\alpha \psi^{(0)} ) $$
(29)

where \( k_{2} = \frac{{n_{ - w}^{(1)} + n_{ + w}^{(1)} }}{{2n_{w}^{(0)} }},k_{3} = \frac{{n_{ - w}^{(1)} - n_{ + w}^{(1)} }}{{2n_{w}^{(0)} }} \).

Let \( \psi_{1}^{(1)} = \psi^{(1)} + \frac{{k_{3} }}{\alpha } \)

Since \( \alpha \left( {\frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}} \right) = \sinh (\alpha \psi^{(0)} ) \) and \( \frac{{\partial^{3} \psi^{(0)} }}{{\partial Y^{3} }} = \cosh (\alpha \psi^{(0)} )\frac{{\partial \psi^{(0)} }}{\partial Y} \), it follows:

$$ \left( {\frac{{\partial^{2} \psi_{1}^{(1)} }}{{\partial Y^{2} }}} \right)\frac{{\partial \psi^{(0)} }}{\partial Y} = \psi_{1}^{(1)} \frac{{\partial^{3} \psi^{(0)} }}{{\partial Y^{3} }} + k_{2} \frac{{\partial \psi^{(0)} }}{\partial Y}\frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }} $$
(30)

Adding \( \frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}\frac{{\partial \psi_{1}^{(1)} }}{\partial Y} \) to both sides we have

$$ \left( {\frac{{\partial \psi^{(0)} }}{\partial Y}\frac{{\partial \psi_{1}^{(1)} }}{\partial Y}} \right) = \left( {{\psi_{1}^{(1)} \frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}}} \right) + \frac{{k_{2} }}{2}\left( {\frac{{\partial \psi^{(0)} }}{\partial Y}} \right)^{2} + C $$
(31)

Integrating both sides, we have

$$ \left( {\frac{{\partial \psi^{(0)} }}{\partial Y}\frac{{\partial \psi_{1}^{(1)} }}{\partial Y}} \right) = \left( {\psi_{1}^{(1)} \frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}} \right) + \frac{{k_{2} }}{2}\left( {\frac{{\partial \psi^{(0)} }}{\partial Y}} \right)^{2} + C $$
(32)

where \( C = \frac{{ - \psi_{c1}^{(1)} \sinh (\alpha \psi_{c}^{(0)} )}}{\alpha } \) (utilizing the centerline boundary condition \( \frac{{\partial \psi^{(0)} }}{\partial Y} = 0,\alpha \frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }} = \sinh (\alpha \psi_{c}^{(0)} ) \). Further, since \( \alpha \frac{{\partial \psi^{(0)} }}{\partial Y} = - \sqrt {2(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))} \), we have

$$ \frac{{\partial \psi_{1}^{(1)} }}{\partial Y} = \psi_{1}^{(1)} \frac{{\frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}}}{{\frac{{\partial \psi^{(0)} }}{\partial Y}}} + \frac{{k_{2} }}{2}\left( {\frac{{\partial \psi^{(0)} }}{\partial Y}} \right) - \frac{{\psi_{c1}^{(1)} \sinh (\alpha \psi_{c}^{(0)} )}}{{\alpha \frac{{\partial \psi^{(0)} }}{\partial Y}}} $$
(33)

It is important to note that the above is linear in \( \psi_{1}^{(1)} \), for solving which one may employ the following integrating factor:

$$ \int { - \frac{{\frac{{\partial^{2} \psi^{(0)} }}{{\partial Y^{2} }}}}{{\frac{{\partial \psi^{(0)} }}{\partial Y}}}{\text{d}}Y = } \int { - \frac{{\sinh \left( {\alpha \psi^{(0)} } \right)}}{{\alpha \frac{{{\text{d}}\psi^{(0)} }}{{{\text{d}}Y}}}}{\text{d}}Y = \int { - \frac{{\sinh \left( {\alpha \psi^{(0)} } \right)}}{{\alpha \left( {\frac{{{\text{d}}\psi^{(0)} }}{{{\text{d}}Y}}} \right)^{2} }}{\text{d}}\psi^{(0)} } } $$
$$ = \int {\frac{{ - \alpha \sinh (\alpha \psi^{(0)} )}}{{2(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))}}{\text{d}}\psi^{(0)} = } - \frac{1}{2}\ln \left(\left| {\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} )} \right|\right) $$
$$ {\text{Integrating factor}} = {\text{e}}^{{ - \frac{1}{2}\ln (\left| {\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} )} \right|)}} = \frac{1}{{\sqrt {\left| {\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} )} \right|} }} $$
(34)

Accordingly, we obtain the following solution for Eq. (33), after applying the pertinent boundary condition at y = 0:

$$ \begin{aligned} \psi^{(1)} + \frac{{k_{3} }}{\alpha } = & \left( {\zeta^{(1)} + \frac{{k_{3} }}{\alpha }} \right)\frac{{\sqrt {(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))} }}{{\sqrt {(\cosh (\alpha ) - \cosh (\alpha \psi_{c}^{(0)} ))} }} - \frac{{k_{2} }}{\alpha }\frac{y}{\varepsilon \sqrt 2 }\sqrt {(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))} \\ & \quad - 2\left( {\psi_{c}^{(1)} + \frac{{k_{3} }}{\alpha }} \right)\frac{{\sinh^{2} \left( {\frac{{\alpha \psi_{c}^{(0)} }}{2}} \right)}}{{\sinh (\alpha \psi_{c}^{(0)} )}}\sqrt \frac{m}{2} \left\{ {E\left( {\frac{i\alpha }{2}, - m} \right) - E\left( {\frac{{i\alpha \psi^{(0)} }}{2}, - m} \right)} \right\}\sqrt {(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))} \\ & \quad + \left( {\psi_{c}^{(1)} + \frac{{k_{3} }}{\alpha }} \right)\frac{{\sinh (\alpha \psi^{(0)} )}}{{\sinh (\alpha \psi_{c}^{(0)} )}} - \left( {\psi_{c}^{(1)} + \frac{{k_{3} }}{\alpha }} \right)\frac{1}{{\sinh (\alpha \psi_{c}^{(0)} )}}\sinh (\alpha )\frac{{\sqrt {(\cosh (\alpha \psi^{(0)} ) - \cosh (\alpha \psi_{c}^{(0)} ))} }}{{\sqrt {(\cosh (\alpha ) - \cosh (\alpha \psi_{c}^{(0)} ))} }} \\ \end{aligned} $$
(35)

Appendix C: Definition of elliptic integrals for imaginary arguments

Elliptic integrals of 1st and 2nd kind are defined as

$$ \begin{gathered} F(\phi ,m) = \int\limits_{0}^{\phi } {\frac{1}{{\sqrt {1 - m\sin^{2} (t)} }}} \;{\text{d}}t \hfill \\ E(\phi ,m) = \int\limits_{0}^{\phi } {\sqrt {1 - m\sin^{2} (t)} \;} {\text{d}}t \hfill \\ \end{gathered} $$

For purely imaginary argument, the integral may be simplified as

$$ \begin{gathered} F(i\phi ,m) = i\int\limits_{0}^{\phi } {\frac{1}{{\sqrt {1 + m\sinh^{2} (t)} }}\;} {\text{d}}t \hfill \\ E(i\phi ,m) = i\int\limits_{0}^{\phi } {\sqrt {1 + m\sinh^{2} (t)} \;} {\text{d}}t \hfill \\ \end{gathered} $$

We numerically evaluate these integrals using ‘quad’ function in MATLAB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naga Neehar, D., Chakraborty, S. Electroosmotic flows with simultaneous spatio-temporal modulations in zeta potential: cases of thick electrical double layers beyond the Debye Hückel limit. Microfluid Nanofluid 12, 395–410 (2012). https://doi.org/10.1007/s10404-011-0883-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0883-5

Keywords

Navigation