Skip to main content
Log in

Electrohydrodynamic Phenomena

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

This work is a review article focused on exploring the interactions between external and induced electric fields and fluid motion, in the presence of embedded charges. Such interactions are generally termed electrohydrodynamics (EHD), which encompasses a vast range of flows stemming from multiscale physical effects. In this review article we shall mainly emphasize on two mechanisms of particular interest to fluid dynamists and engineers, namely electrokinetic flows and the leaky dielectric model. We shed light on the underlying physics behind the above mentioned phenomena and subsequently demonstrate the presence of a common underpinning pattern which governs any general electrohydrodynamic motion. Hence we go on to show that the seemingly unrelated fields of electrokinetics and the leaky dielectric models are indeed closely related to each other through the much celebrated Maxwell stresses, which have long been known as stresses caused in fluids in presence of electric and magnetic fields. Interactions between Maxwell Stresses and charges (for instance, in the form of ions) present in the fluid generates a body force on the same and eventually leads to flow actuation. We show that the manifestation of the Maxwell stresses itself depends on the charge densities, which in turn is dictated by the underlying motion of the fluid. We demonstrate how such inter-related dynamics may give rise intricately coupled and non-linear system of equations governing the dynamical state of the system. This article is mainly divided into two parts. First, we explore the realms of electrokinetics, wherein the formation and the structure of the so-called electrical double layer (EDL) is delineated. Subsequently, we review EDL’s relevance to electroosmosis and streaming potential with the key being the presence and absence of an applied pressure gradient. We thereafter focus on the leaky dielectric model, wherein the fundamental governing equations and its main difference with electrokinetics are described. We limit our attentions to the leaky dielectric motion around droplets and flat surfaces and subsequent interface deformation. To this end, through a rigorous review of a number of previous articles, we establish that the interface shapes can be finely tailored to achieve the desired geometrical characteristics by tuning the fluid properties. We further discuss previous studies, which have shown migration of droplets in the presence of strong electric fields. Finally, we describe the effects of external agents such as surface impurities on leaky dielectric motion and attempt to establish a qualitative connection between the leaky dielectric model and EDLs. We finish off with some pointers for further research activities and open questions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. Reuss FF (1809) Sur un novel effet de l’électricité galvanique. Mémoires de la Société Impériale des Naturalistes de Moskou 2:327

    Google Scholar 

  2. Quincke G (1861) Ueber die fortführung materieller theilchen durch strömende elektricität. Ann Phys 113:513

    Article  Google Scholar 

  3. Burgreen D, Nakache F (1964) Electrokinetic flow in ultrafine capillary slits1. J Phys Chem 68(5):1084

    Article  Google Scholar 

  4. Hunter RJ (2013) Zeta potential in colloid science: principles and applications, vol 2. Academic press, Cambridge

    Google Scholar 

  5. Saville D (1977) Electrokinetic effects with small particles. Annu Rev Fluid Mech 9(1):321

    Article  CAS  Google Scholar 

  6. Gray DH, Mitchell JK (1967) Fundamental aspects of electro-osmosis in soils. J Soil Mech Found Div 93(6):209

    Google Scholar 

  7. Ajdari A (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys Rev Lett 75(4):755

    Article  CAS  Google Scholar 

  8. Ajdari A (2001) Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys Rev E 65(1):016301

    Article  CAS  Google Scholar 

  9. Ajdari A (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys Rev E 53(5):4996

    Article  CAS  Google Scholar 

  10. Stroock AD, Weck M, Chiu DT, Huck WT, Kenis PJ, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 84(15):3314

    Article  CAS  Google Scholar 

  11. Bahga SS, Vinogradova OI, Bazant MZ (2010) Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J Fluid Mech 644:245

    Article  CAS  Google Scholar 

  12. Yariv E (2009) An asymptotic derivation of the thin-debye-layer limit for electrokinetic phenomena. Chem Eng Commun 197(1):3

    Article  CAS  Google Scholar 

  13. Guoy LG (1910) Sur la constitution de la charge électrique a la surface d’un électrolyte. Journal de Physique 9:457

    Google Scholar 

  14. Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25:475

    Article  Google Scholar 

  15. Helmholtz H (1879) Studien über electrishe grenzchichten. Ann Phys 7:337

    Article  Google Scholar 

  16. Onsager L (1931) Reciprocal relations in irreversible processes. Phys Rev 37(4):405

    Article  CAS  Google Scholar 

  17. Chakraborty S, Das S (2008) Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the debye-hückel limit. Phys Rev E 77:037303. https://doi.org/10.1103/PhysRevE.77.037303

    Article  CAS  Google Scholar 

  18. Chein R, Liao J (2007) Analysis of electrokinetic pumping efficiency in capillary tubes. Electrophoresis 28(4):635

    Article  CAS  Google Scholar 

  19. Chun MS, Lee TS, Choi NW (2005) Microfluidic analysis of electrokinetic streaming potential induced by microflows of monovalent electrolyte solution. J Micromech Microeng 15(4):710

    Article  CAS  Google Scholar 

  20. Davidson C, Xuan X (2008) Electrokinetic energy conversion in slip nanochannels. J Power Sources 179(1):297

    Article  CAS  Google Scholar 

  21. Levich VG (1962) Physicochemical hydrodynamics. Prentice hall, Upper Saddle River

    Google Scholar 

  22. Levine S, Neale GH (1974) The prediction of electrokinetic phenomena within multiparticle systems. i. electrophoresis and electroosmosis. J Colloid Interface Sci 47(2):520

    Article  Google Scholar 

  23. Baygents J, Saville D (1991) Electrophoresis of small particles and fluid globules in weak electrolytes. J Colloid Interface Sci 146(1):9

    Article  CAS  Google Scholar 

  24. Baygents J, Saville D (1991) Electrophoresis of drops and bubbles. J Chem Soc, Faraday Trans 87(12):1883

    Article  CAS  Google Scholar 

  25. Goswami P, Dhar J, Ghosh U, Chakraborty S (2017) Solvent-mediated nonelectrostatic ion-ion interactions predicting anomalies in electrophoresis. Electrophoresis 38(5):712

    Article  CAS  Google Scholar 

  26. Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech 38:309

    Article  Google Scholar 

  27. Ghosal S (2003) The effect of wall interactions in capillary-zone electrophoresis. J Fluid Mech 491:285

    Article  CAS  Google Scholar 

  28. Squires TM, Quake SR (2005) Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977

    Article  CAS  Google Scholar 

  29. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381

    Article  Google Scholar 

  30. Bandopadhyay A, DasGupta D, Mitra SK, Chakraborty S (2013) Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor. Phys Rev E 87:033006. https://doi.org/10.1103/PhysRevE.87.033006

    Article  CAS  Google Scholar 

  31. Revil A, Schwaeger H, Cathles L, Manhardt P (1999) Streaming potential in porous media: 2. theory and application to geothermal systems. J Geophys Res Solid Earth 104(B9):20033

    Article  CAS  Google Scholar 

  32. Johnson PR (1999) A comparison of streaming and microelectrophoresis methods for obtaining the \(\zeta \) potential of granular porous media surfaces. J Colloid Interface Sci 209(1):264

    Article  CAS  Google Scholar 

  33. Revil A, Linde N, Cerepi A, Jougnot D, Matthäi S, Finsterle S (2007) Electrokinetic coupling in unsaturated porous media. J Colloid Interface Sci 313(1):315

    Article  CAS  Google Scholar 

  34. Jouniaux L, Pozzi JP (1995) Permeability dependence of streaming potential in rocks for various fluid conductivities. Geophys Res Lett 22(4):485

    Article  Google Scholar 

  35. Guichet X, Jouniaux L, Pozzi JP (2003) Streaming potential of a sand column in partial saturation conditions. J Geophys Res Solid Earth 10(B3)

  36. Jaafar M, Vinogradov J, Jackson M (2009) Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity nacl brine. Geophys Res Lett 36(21)

  37. Morgan F, Williams E, Madden T (1989) Streaming potential properties of westerly granite with applications. J Geophys Res Solid Earth 94(B9):12449

    Article  CAS  Google Scholar 

  38. Ghosh U, Chakraborty S (2013) Electrokinetics over charge-modulated surfaces in the presence of patterned wettability: role of the anisotropic streaming potential. Phys Rev E 88(3):033001

    Article  CAS  Google Scholar 

  39. Dhar J, Ghosh U, Chakraborty S (2014) Alterations in streaming potential in presence of time periodic pressure-driven flow of a power law fluid in narrow confinements with nonelectrostatic ion-ion interactions. Electrophoresis 35(5):662

    Article  CAS  Google Scholar 

  40. Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10(38):7558

    Article  CAS  Google Scholar 

  41. Van der Heyden FH, Bonthuis DJ, Stein D, Meyer C, Dekker C (2006) Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett 6(10):2232

    Article  CAS  Google Scholar 

  42. Lu MC, Satyanarayana S, Karnik R, Majumdar A, Wang CC (2006) A mechanical-electrokinetic battery using a nano-porous membrane. J Micromech Microeng 16(4):667

    Article  CAS  Google Scholar 

  43. van der Heyden FH, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7(4):1022

    Article  CAS  Google Scholar 

  44. Melcher JR, Schwarz WJ Jr (1968) Interfacial relaxation overstability in a tangential electric field. Phys Fluids 11(12):2604

    Article  Google Scholar 

  45. Melcher JR, Firebaugh MS (1967) Traveling-wave bulk electroconvection induced across a temperature gradient. Phys Fluids 10(6):1178

    Article  Google Scholar 

  46. Taylor G (1966) In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences. 291:159–166

  47. Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3(2):69

    Article  Google Scholar 

  48. Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1

    Article  Google Scholar 

  49. Melcher J (1963) Field-coupled surface waves: a comparative study of suface-coupled electrohydrodynamic and magnetohydrodynamic systems. M.I.T. Press research monographs. M.I.T. Press, Cambridge

    Google Scholar 

  50. Vlahovska PM, Salipante P (2018) Electrohydrodynamics of drops and vesicles. Annu Rev Fluid Mech 50(1)

  51. Brosseau Q, Vlahovska PM (2017) Streaming from the equator of a drop in an external electric field. Phys Rev Lett 119(3):034501

    Article  Google Scholar 

  52. Devitt E, Melcher J (1965) Surface electrohydrodynamics with high-frequency fields. Phys Fluids 8(6):1193

    Article  Google Scholar 

  53. Taylor G, McEwan A (1965) The stability of a horizontal fluid interface in a vertical electric field. J Fluid Mech 22(01):1

    Article  Google Scholar 

  54. Johnson R (1968) Effect of an electric field on boiling heat transfer Effect of electric fields on heat transfer enhancement. AIAA J 6(8):1456

    Article  Google Scholar 

  55. Lovenguth RF, Hanesian D (1971) Boiling heat transfer in the presence of nonuniform, direct current electric fields. Ind Eng Chem Fundam 10(4):570

    Article  CAS  Google Scholar 

  56. Didkovsky A, Bologa M (1981) Vapour film condensation heat transfer and hydrodynamics under the influence of an electric field. Int J Heat Mass Transf 24(5):811

    Article  Google Scholar 

  57. Joos F, Snaddon R (1985) Electrostatically enhanced film condensation. J Fluid Mech 156:23 EHD + heat transfer

    Article  CAS  Google Scholar 

  58. Bologa M, Savin I, Didkovsky A (1987) Electric-field-induced enhancement of vapour condensation heat transfer in the presence of a non-condensable gas. Int J Heat Mass Transf 30(8):1577

    Article  CAS  Google Scholar 

  59. Atten P (1996) Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids. IEEE Trans Dielectr Electr Insul 3(1):1

    Article  CAS  Google Scholar 

  60. Yih CS (1968) Stability of a horizontal fluid interface in a periodic vertical electric field. Phys Fluids 11(7):1447

    Article  Google Scholar 

  61. Raco RJ, Peskin RL (1969) Stability of a plane fluid interface in the presence of a transverse electrostatic field. Phys Fluids 12(3):568

    Article  Google Scholar 

  62. Miller CA, Scriven L (1970) Interfacial instability due to electrical forces in double layers: I. general considerations. J Colloid Interface Sci 33(3):360

    Article  Google Scholar 

  63. Miller C, Scriven L (1970) Interfacial instability due to electrical forces in double layers: II. stability of interfaces with diffuse layers. J Colloid Interface Sci 33(3):371

    Article  Google Scholar 

  64. Torza S, Cox R, Mason S (1971) Electrohydrodynamic deformation and burst of liquid drops. Philos Trans R Soc Lond A Math Phys Eng Sci 269(1198):295

    Article  Google Scholar 

  65. Cheung YN, Nguyen NT, Wong TN (2014) Droplet manipulation in a microfluidic chamber with acoustic radiation pressure and acoustic streaming. Soft Matter 10(40):8122

    Article  CAS  Google Scholar 

  66. Choi S, Saveliev AV (2017) Oscillatory coalescence of droplets in an alternating electric field. Phys Rev Fluids 2(6):63603 (Coalescence of drops in AC field)

    Article  Google Scholar 

  67. Williams MB, Davis SH (1982) Nonlinear theory of film rupture. J Colloid Interface Sci 90(1):220 (Nonlinear theory of rupture)

    Article  CAS  Google Scholar 

  68. Miksis MJ, Ida M (1998) The dynamics of thin films II: applications. SIAM J Appl Math 58(2):474 (Thin films review article: applications)

    Article  Google Scholar 

  69. Miksis MJ, Ida M (1998) The dynamics of thin films I: general theory. SIAM J Appl Math 58(2):456 (Thin film dynamics: basics)

    Article  Google Scholar 

  70. Schäffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Electrically induced structure formation and pattern transfer. Nature 403(6772):874

    Article  Google Scholar 

  71. Russell TP, Lin Z, Schäffer E, Steiner U (2003) Aspects of electrohydrodynamic instabilities at polymer interfaces. Fibers Polym 4(1):1

    Article  CAS  Google Scholar 

  72. Tseluiko D, Blyth M, Papageorgiou D, Vanden-Broeck JM (2009) Viscous electrified film flow over step topography. SIAM J Appl Math 70(3):845. https://doi.org/10.1137/080721674

    Article  Google Scholar 

  73. Bandyopadhyay D, Sharma A, Thiele U, Reddy PDS (2009) Electric-field-induced interfacial instabilities and morphologies of thin viscous and elastic bilayers. Langmuir 25(16):9108

    Article  CAS  Google Scholar 

  74. Li B, Li Y, Xu GK, Feng XQ (2009) Surface patterning of soft polymer film-coated cylinders via an electric field. J Phys Condens Matter 21(44):445006

    Article  CAS  Google Scholar 

  75. Gambhire P, Thaokar R (2010) Electrohydrodynamic instabilities at interfaces subjected to alternating electric field. Phys Fluids 22(6):064103

    Article  CAS  Google Scholar 

  76. Gambhire P, Thaokar R (2011) Linear stability analysis of electrohydrodynamic instabilities at fluid interfaces in the small feature limit. Eur Phys J E 34(8):1

    Article  CAS  Google Scholar 

  77. Gambhire P, Thaokar R (2012) Role of conductivity in the electrohydrodynamic patterning of air-liquid interfaces. Phys Rev E 86(3):036301

    Article  CAS  Google Scholar 

  78. Espin L, Corbett A, Kumar S (2013) Electrohydrodynamic instabilities in thin viscoelastic films-ac and dc fields. J Nonnewton Fluid Mech 196:102

    Article  CAS  Google Scholar 

  79. Yang Q, Li BQ, Ding Y, Shao J (2014) Steady state of electrohydrodynamic patterning of micro/nanostructures on thin polymer films. Ind Eng Chem Res 53(32):12720

    Article  CAS  Google Scholar 

  80. Bremond N, Bibette J (2012) Exploring emulsion science with microfluidics. Soft Matter 8(41):10549 (Review + colloidal science using microfludics)

    Article  CAS  Google Scholar 

  81. Darhuber AA, Troian SM (2005) Principles of microfluidic actuation by modulation of surface stresses. Annu Rev Fluid Mech 37:425

    Article  Google Scholar 

  82. Ghosh U, Mandal S, Chakraborty S (2017) Electroosmosis over charge-modulated surfaces with finite electrical double layer thicknesses: asymptotic and numerical investigations. Phys Rev Fluids 2(6):064203

    Article  Google Scholar 

  83. Schnitzer O, Yariv E (2012) Macroscale description of electrokinetic flows at large zeta potentials: nonlinear surface conduction. Phys Rev E 86(2):021503

    Article  CAS  Google Scholar 

  84. Yariv E (2004) Electro-osmotic flow near a surface charge discontinuity. J Fluid Mech 521:181

    Article  Google Scholar 

  85. Schnitzer O, Yariv E (2012) Induced-charge electro-osmosis beyond weak fields. Phys Rev E 86(6):061506

    Article  CAS  Google Scholar 

  86. Yariv E, Davis AM (2010) Electro-osmotic flows over highly polarizable dielectric surfaces. Phys Fluids 22(5):052006

    Article  CAS  Google Scholar 

  87. Schnitzer O, Yariv E (2012) Strong-field electrophoresis. J Fluid Mech 701:333

    Article  Google Scholar 

  88. Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Nat Acad Sci 96(7):3358

    Article  CAS  Google Scholar 

  89. Hingston F, Atkinson R, Posner A, Quirk J (1967) Specific adsorption of anions. Nature 215(5109):1459

    Article  CAS  Google Scholar 

  90. Ninham B, Kurihara K, Vinogradova O (1997) Hydrophobicity, specific ion adsorption and reactivity. Colloids Surf A 123:7

    Article  Google Scholar 

  91. Hiemstra T, Van Riemsdijk WH (1996) A surface structural approach to ion adsorption: the charge distribution (cd) model. J Colloid Interface Sci 179(2):488

    Article  CAS  Google Scholar 

  92. Fokkink L, De Keizer A, Lyklema J (1987) Specific ion adsorption on oxides: surface charge adjustment and proton stoichiometry. J Colloid Interface Sci 118(2):454

    Article  CAS  Google Scholar 

  93. Horinek D, Netz RR (2007) Specific ion adsorption at hydrophobic solid surfaces. Phys Rev Lett 99(22):226104

    Article  CAS  Google Scholar 

  94. Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E 75(2):21502

    Article  CAS  Google Scholar 

  95. Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys Rev 75(2):21503

    Google Scholar 

  96. Bandopadhyay A, Ghosh U, Chakraborty S (2013) Time periodic electroosmosis of linear viscoelastic liquids over patterned charged surfaces in microfluidic channels. J Nonnewton Fluid Mech 202:1

    Article  CAS  Google Scholar 

  97. Borukhov I, Andelman D, Orland H (1997) Steric effects in electrolytes: a modified Poisson–Boltzmann equation. Phys Rev Lett 79(3):435

    Article  CAS  Google Scholar 

  98. Das S, Chakraborty S (2011) Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys Rev E 84:012501. https://doi.org/10.1103/PhysRevE.84.012501

    Article  CAS  Google Scholar 

  99. Bandopadhyay A, Chakraborty S (2011) Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements. Langmuir 27(19):12243

    Article  CAS  Google Scholar 

  100. Booth F (1955) Dielectric constant of polar liquids at high field strengths. J Chem Phys 23(3):453

    Article  CAS  Google Scholar 

  101. Macdonald JR, Barlow CA Jr (1962) Theory of double-layer differential capacitance in electrolytes. J Chem Phys 36(11):3062

    Article  CAS  Google Scholar 

  102. Bandopadhyay A, Chakraborty S (2012) Combined effects of interfacial permittivity variations and finite ionic sizes on streaming potentials in nanochannels. Langmuir 28(50):17552

    Article  CAS  Google Scholar 

  103. Prasanna Misra R, Das S, Mitra SK (2013) Electric double layer force between charged surfaces: effect of solvent polarization. J Chem Phys 138(11):114703

    Article  CAS  Google Scholar 

  104. Bandopadhyay A, Shaik VA, Chakraborty S (2015) Effects of finite ionic size and solvent polarization on the dynamics of electrolytes probed through harmonic disturbances. Phys Rev E 91(4):042307

    Article  CAS  Google Scholar 

  105. Ghosh U, Chakraborty S (2016) Electro-osmosis over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. Phys Fluids 28(6):062007

    Article  CAS  Google Scholar 

  106. Saville D (1997) Electrohydrodynamics: the taylor-melcher leaky dielectric model. Annu Rev Fluid Mech 29(1):27

    Article  Google Scholar 

  107. Atkins P, De Paula J (2013) Elem Phys Chem. Oxford University Press, Oxford

    Google Scholar 

  108. Bandopadhyay A, Chakraborty S (2015) Consistent prediction of streaming potential in non-newtonian fluids: the effect of solvent rheology and confinement on ionic conductivity. Phys Chem Chem Phys 17(11):7282

    Article  CAS  Google Scholar 

  109. Ghosh U, Chakraborty S (2015) Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Phys Fluids 27(6):062004

    Article  CAS  Google Scholar 

  110. Bruus H (2008) Theor microfluid, vol 18. Oxford University Press, Oxford

    Google Scholar 

  111. Pacheco J (2008) Mixing enhancement in electro-osmotic flows via modulation of electric fields. Phys Fluids 20(9):093603

    Article  CAS  Google Scholar 

  112. Boy DA, Storey BD (2007) Electrohydrodynamic instabilities in microchannels with time periodic forcing. Phys Rev E 76(2):26304 (Periodic E forcing normal to interface clean interface Numerical simluations important)

    Article  CAS  Google Scholar 

  113. Feng JQ (1999) Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric reynolds number. Proc R Soc Lond A Math Phys Eng Sci 455(1986):2245

    Article  CAS  Google Scholar 

  114. Nganguia H, Young YN, Vlahovska PM, Blawzdziewicz J, Zhang J, Lin H (2013) Equilibrium electro-deformation of a surfactant-laden viscous drop. Phys Fluids 25(9):092106

    Article  CAS  Google Scholar 

  115. Das D, Saintillan D (2017) A nonlinear small-deformation theory for transient droplet electrohydrodynamics. J Fluid Mech 810:225

    Article  Google Scholar 

  116. Mandal S, Bandopadhyay A, Chakraborty S (2016) The effect of uniform electric field on the cross-stream migration of a drop in plane poiseuille flow. J Fluid Mech 809:726

    Article  Google Scholar 

  117. Bandopadhyay A, Hardt S (2017) Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field. Phys Fluids 29(12):124101

    Article  CAS  Google Scholar 

  118. Tseluiko D, Papageorgiou DT (2006) Wave evolution on electrified falling films. J Fluid Mech 556:361

    Article  Google Scholar 

  119. Tseluiko D, Papageorgiou DT (2007) Nonlinear dynamics of electrified thin liquid films. SIAM J Appl Math 67(5):1310

    Article  Google Scholar 

  120. Esmaeeli A, Reddy MN (2011) The electrohydrodynamics of superimposed fluids subjected to a nonuniform transverse electric field. Int J Multiph Flow 37(10):1331

    Article  CAS  Google Scholar 

  121. Bandopadhyay A, Mandal S, Kishore N, Chakraborty S (2016) Uniform electric-field-induced lateral migration of a sedimenting drop. J Fluid Mech 792:553

    Article  CAS  Google Scholar 

  122. Leal LG (2007) Advanced transport phenomena: fluid mechanics and convective transport processes, vol 7. Cambridge University Press, Cambridge

    Book  Google Scholar 

  123. Melcher J, Taylor G (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1(1):111

    Article  Google Scholar 

  124. Allan R, Mason S (1962) Particle behaviour in shear and electric fields I. Deformation and burst of fluid drops. Proc R Soc Lond A 267(1328):45

    Article  Google Scholar 

  125. Allan R, Mason S (1962) Particle behaviour in shear and electric fields II. Rigid rods and spherical doublets. Proc R Soc Lond A 267(1328):62

    Article  Google Scholar 

  126. Mandal S, Chaudhury K, Chakraborty S (2014) Transient dynamics of confined liquid drops in a uniform electric field. Phys Rev E 89(5):053020

    Article  CAS  Google Scholar 

  127. Das D, Saintillan D (2017) Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations. J Fluid Mech 829:127

    Article  CAS  Google Scholar 

  128. Lamb H (1932) Hydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  129. Happel J, Brenner H (2012) Low Reynolds number hydrodynamics: with special applications to particulate media, vol 1. Springer Science & Business Media, Berlin

    Google Scholar 

  130. Hetsroni G, Haber S (1970) The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol Acta 9(4):488

    Article  Google Scholar 

  131. Hetsroni G, Haber S, Wacholder E (1970) The flow fields in and around a droplet moving axially within a tube. J Fluid Mech 41(4):689

    Article  Google Scholar 

  132. Haber S, Hetsroni G (1971) The dynamics of a deformable drop suspended in an unbounded stokes flow. J Fluid Mech 49(2):257

    Article  Google Scholar 

  133. Ha JW, Yang SM (1995) Effects of surfactant on the deformation and stability of a drop in a viscous fluid in an electric field. J Colloid Interface Sci 175(2):369

    Article  CAS  Google Scholar 

  134. Ha JW, Yang SM (1998) Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field. J Colloid Interface Sci 206(1):195

    Article  CAS  Google Scholar 

  135. Sherwood J (1988) Breakup of fluid droplets in electric and magnetic fields. J Fluid Mech 188:133

    Article  CAS  Google Scholar 

  136. Schnitzer O, Yariv E (2015) The taylor-melcher leaky dielectric model as a macroscale electrokinetic description. J Fluid Mech 773:1

    Article  CAS  Google Scholar 

  137. Ghosh U, Chaudhury K, Chakraborty S (2016) Electroosmosis over non-uniformly charged surfaces: modified smoluchowski slip velocity for second-order fluids. J Fluid Mech 809:664

    Article  CAS  Google Scholar 

  138. Schäffer E, Thurn-Albrecht T, Russell TP, Steiner U (2001) Electrohydrodynamic instabilities in polymer films. EPL (Europhys Lett) 53(4):518

    Article  Google Scholar 

  139. Lin Z, Kerle T, Baker SM, Hoagland DA, Schäffer E, Steiner U, Russell TP (2001) Electric field induced instabilities at liquid/liquid interfaces. J Chem Phys 114(5):2377

    Article  CAS  Google Scholar 

  140. Tilley B, Petropoulos P, Papageorgiou D (2001) Dynamics and rupture of planar electrified liquid sheets. Phys Fluids 13(12):3547

    Article  CAS  Google Scholar 

  141. Schäffer E, Harkema S, Blossey R, Steiner U (2002) Temperature-gradient-induced instability in polymer films. EPL (Europhys Lett) 60(2):255

    Article  Google Scholar 

  142. Schäffer E, Harkema S, Roerdink M, Blossey R, Steiner U (2003) Morphological instability of a confined polymer film in a thermal gradient. Macromolecules 36(5):1645

    Article  CAS  Google Scholar 

  143. Pease LF III, Russel WB (2003) Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis. J Chem Phys 118(8):3790

    Article  CAS  Google Scholar 

  144. Lei X, Wu L, Deshpande P, Yu Z, Wu W, Ge H, Chou SY (2003) 100 nm period gratings produced by lithographically induced self-construction. Nanotechnology 14(7):786

    Article  CAS  Google Scholar 

  145. Craster R, Matar O (2005) Electrically induced pattern formation in thin leaky dielectric films. Phys Fluids 17(3):032104

    Article  CAS  Google Scholar 

  146. Mandal S, Ghosh U, Bandopadhyay A, Chakraborty S (2015) Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements. J Fluid Mech 776:390

    Article  Google Scholar 

  147. Collins RT, Jones JJ, Harris MT, Basaran OA (2008) Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat Phys 4(2):149

    Article  CAS  Google Scholar 

  148. Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J Fluid Mech 509:217

    Article  Google Scholar 

  149. Jacqmin D (1999) Calculation of two-phase navier-stokes flows using phase-field modeling. J Comput Phys 155(1):96

    Article  Google Scholar 

  150. Jacqmin D (2000) Contact-line dynamics of a diffuse fluid interface. J Fluid Mech 402:57

    Article  CAS  Google Scholar 

  151. Chaudhury K, Ghosh U, Chakraborty S (2013) Substrate wettability induced alterations in convective heat transfer characteristics in microchannel flows: an order parameter approach. Int J Heat Mass Transf 67:1083

    Article  Google Scholar 

  152. Jordan DW, Smith P (1999) Nonlinear ordinary differential equations: an introduction to dynamical systems, vol 2. Oxford University Press, USA

    Google Scholar 

  153. Nguyen T, Xie Y, de Vreede LJ, van den Berg A, Eijkel JC (2013) Highly enhanced energy conversion from the streaming current by polymer addition. Lab Chip 13(16):3210

    Article  CAS  Google Scholar 

  154. Bandopadhyay A, Chakraborty S (2012) Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements. Phys Rev E 85(5):056302

    Article  CAS  Google Scholar 

  155. Bandopadhyay A, Chakraborty S (2012) Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Appl Phys Lett 101(4):043905

    Article  CAS  Google Scholar 

  156. Zimmermann R, Norde W, Cohen Stuart MA, Werner C (2005) Electrokinetic characterization of poly (acrylic acid) and poly (ethylene oxide) brushes in aqueous electrolyte solutions. Langmuir 21(11):5108

    Article  CAS  Google Scholar 

  157. Das S, Banik M, Chen G, Sinha S, Mukherjee R (2015) Polyelectrolyte brushes: theory, modelling, synthesis and applications. Soft Matter 11(44):8550

    Article  CAS  Google Scholar 

  158. Chen G, Das S (2015) Electroosmotic transport in polyelectrolyte-grafted nanochannels with ph-dependent charge density. J Appl Phys 117(18):185304

    Article  CAS  Google Scholar 

  159. Hill RJ, Saville D (2005) ‘Exact’ solutions of the full electrokinetic model for soft spherical colloids: Electrophoretic mobility. Colloids Surf A 267(1–3):31

    Article  CAS  Google Scholar 

  160. Chan YHM, Schweiss R, Werner C, Grunze M (2003) Electrokinetic characterization of oligo-and poly (ethylene glycol)-terminated self-assembled monolayers on gold and glass surfaces. Langmuir 19(18)

  161. Rühe J, Knoll W (2002) Functional polymer brushes. J Macromol Sci Part C Polym Rev 42(1):91

    Article  Google Scholar 

  162. Mandal S, Bandopadhyay A, Chakraborty S (2016) Dielectrophoresis of a surfactant-laden viscous drop. Phys Fluids 28(6):062006

    Article  CAS  Google Scholar 

  163. Olesen LH, Bazant MZ, Bruus H (2010) Strongly nonlinear dynamics of electrolytes in large ac voltages. Phys Rev E 82(1):011501

    Article  CAS  Google Scholar 

  164. Bohinc K, Shrestha A, May S (2011) The Poisson–Helmholtz–Boltzmann model. Eur Phys J E 34(10):108

    Article  CAS  Google Scholar 

  165. Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 85(9):2785

    CAS  Google Scholar 

Download references

Acknowledgements

Prof. Suman Chakraborty is gratefully thanked for initiating AB and UG to the area of electrokinetics and electrohydrodynamics. The authors also thank Dr. Shubhadeep Mandal for his inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Bandopadhyay.

Derivation of Maxwell Stress

Derivation of Maxwell Stress

The form of the Maxwell stress may be deduced by starting with the force acting on a unit volume due to the simultaneous action of an electric field, \({\mathbf E} \), and a magnetic field, \({\mathbf B} \). The Lorentz force is obtained as49

$$\begin{aligned} {\mathbf F} _e&= q{\mathbf E} + q{\mathbf v} \times {\mathbf B} \end{aligned}$$
(70)
$$\begin{aligned} {\mathbf f} _e&= \rho _e{\mathbf E} + {\mathbf J} \times {\mathbf B} \end{aligned}$$
(71)

where the former is the total force and the latter is the force per unit volume. \(\rho _e\) depicts the charge density and \({\mathbf J} \) represents the amperic flux (current). We must now appeal to the Maxwell’s laws to relate \(\rho _e\) and \({\mathbf J }\) to the fundamental quantities \({\mathbf E} \) and \({\mathbf B} \). Gauss’s law yields \(\rho _e = \epsilon _0\nabla \cdot {\mathbf E} \) while Ampère’s law yields \({\mathbf J} = \frac{1}{\mu _0}\nabla \times {\mathbf B} - \epsilon _0 \frac{\partial E}{\partial t}\). The physical meaning of the above two expressions is clear. Gauss’s law indicates that the flux of the electric field through a surce is due to the charge enclosed by that surface. Ampère’s law indicates that the magnetic field around a contour is proportional to the electric current, \({\mathbf J} \), and the displacement current, \(\partial E/\partial t\). Thus, we obtain

$$\begin{aligned} {\mathbf f} _e = \epsilon _0 \nabla \cdot {\mathbf E} {\mathbf E} + \frac{1}{\mu _0}\nabla \times {\mathbf B} \times {\mathbf B} -\epsilon _0\frac{\partial {\mathbf E} }{\partial t}\times {\mathbf B} \end{aligned}$$
(72)

where we can utilize the identity

$$\begin{aligned} \frac{\partial }{\partial t} ({\mathbf E} \times {\mathbf B} ) = \frac{\partial E}{\partial t}\times {\mathbf B} + {\mathbf E} \times \frac{\partial {\mathbf B} }{\partial t} \end{aligned}$$
(73)

along with the Maxwell-Faraday equation \(\nabla \times {\mathbf E} = -\frac{\partial B}{\partial t}\) to modify equation (72) to yield

$$\begin{aligned} {\mathbf f} _e = \epsilon _0 \left( \nabla \cdot {\mathbf E} {\mathbf E} - {\mathbf E} \times \nabla \times {\mathbf E} \right) + \frac{1}{\mu _0}\left( -{\mathbf B} \times \nabla \times {\mathbf B} \right) -\epsilon _0 \frac{\partial }{\partial t}\left( {\mathbf E} \times {\mathbf B} \right) . \end{aligned}$$
(74)

In order to symmetrize the above expression, we make use of the Gauss’s law of magnetism which asserts us that there are no magnetic monopoles, i.e. \(\nabla \cdot {\mathbf B} = 0\). This can then simply be added to equation (74) to obtain

$$\begin{aligned} {\mathbf f} _e = \epsilon _0 \left( (\nabla \cdot {\mathbf E} ) {\mathbf E} - {\mathbf E} \times \nabla \times {\mathbf E} \right) + \frac{1}{\mu _0}\left( (\nabla \cdot {\mathbf B} ) {\mathbf B} -{\mathbf B} \times \nabla \times {\mathbf B} \right) -\epsilon _0 \frac{\partial }{\partial t}\left( {\mathbf E} \times {\mathbf B} \right) \end{aligned}$$
(75)

upon which further simplification is obtained by noting the vector identity \({\mathbf E} \nabla {\mathbf E} = \frac{1}{2}\nabla (|{\mathbf E} |^2)\) to yield

$$\begin{aligned} {\mathbf f} _e = \epsilon _0\left( (\nabla \cdot {\mathbf E} ){\mathbf E} + ({\mathbf E} \cdot ){\mathbf E} \right) -\frac{1}{2}\epsilon _0\nabla |{\mathbf E} |^2 + \frac{1}{\mu _0}\left( (\nabla \cdot {\mathbf B} ){\mathbf B} + ({\mathbf B} \cdot ){\mathbf B} \right) -\frac{1}{2\mu _0}\nabla |{\mathbf B} |^2 -\epsilon _0\frac{\partial }{\partial t}\left( {\mathbf E} \times {\mathbf B} \right) . \end{aligned}$$
(76)

When the effects of the magnetic field is neglected the above expression may be set in the form of a divergence of a tensor form as

$$\begin{aligned} {\mathbf f} _e = \nabla \cdot \tau ^E;\qquad \tau ^E = \epsilon _0{\mathbf E} \otimes {\mathbf E} -\frac{1}{2}\epsilon _0|{\mathbf E} |^2{\mathbf {I}}\implies \tau ^E_{ij} = \epsilon _0 E_iE_j -\frac{1}{2}\epsilon _0 E_kE_k\delta _{ij} \end{aligned}$$
(77)

where \({\mathbf {I}}\) and \(\delta _{ij}\) represent the identity tensor and Kronecker delta respectively.

While the above derivation is done for a volume in vaccum, one can logically extend the same to a medium with a permittivity given by \(\epsilon = \epsilon _0\epsilon _r\) where \(\epsilon _r\) represents the relative permittivity. In that case the body force may be evaluated by taking the divergence of the Maxwell stress tensor

$$\begin{aligned} \tau ^E = \epsilon {\mathbf E} \otimes {\mathbf E} - \frac{1}{2}\epsilon |{\mathbf E} |^2{\mathbf {I}} \implies \nabla \cdot \tau ^E = (\nabla \cdot \epsilon {\mathbf E} )E + (\epsilon {\mathbf E} \cdot \nabla ){\mathbf E} -\frac{1}{2}\nabla (\epsilon {\mathbf E} \cdot {\mathbf E} ) \end{aligned}$$
(78)

For negligible magnetic effects we may assume that \(\nabla \times E = 0\), i.e. the electric field is irrotatonal. We will also make use of the fact that for a medium with permittivity \(\epsilon \), the Gauss’s law implies that \(\nabla \cdot \epsilon {\mathbf E} = \rho _{e,f}\), where \(\rho _{e,f}\) represents the free charge density. Thus we obtain the force as

$$\begin{aligned} {\mathbf f} _e = \rho _{e,f}{\mathbf E} - \frac{1}{2}|{\mathbf E} ^2|\nabla \epsilon \end{aligned}$$
(79)

where we have neglected the additional volumetric body force which is called as the electrostriction force given by

$$\begin{aligned} \nabla \left( \frac{1}{2}|{\mathbf E} |^2 \rho \frac{\partial \epsilon }{\partial \rho }\right) \end{aligned}$$
(80)

which accounts for the force generated by the variation of the permittivity with density. Being a gradient of a quantity, this force may be absorbed in a modified pressure.

The electric body force described in equation (79) is comprised of the force acting due to an electric field on a region of net charge while the second term represents the body force arising due to the spatial inhomogeneity of the permittivity. Typically, the former effect is responsible for electrokinetic phenomena for single phase flows while the latter is important for analyzing the forces at multiphase interfaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandopadhyay, A., Ghosh, U. Electrohydrodynamic Phenomena. J Indian Inst Sci 98, 201–225 (2018). https://doi.org/10.1007/s41745-018-0075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-018-0075-3

Keywords

Navigation