Skip to main content
Log in

Biological impact of harmaline, ricinine and their combined effects with Bacillus thuringiensis on Spodoptera exigua (Lepidoptera: Noctuidae)

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The history of botanical pesticides reveals that their study did mainly focus on the determination of acute median lethal dose or concentration. In the current situation, it is the dire need to understand the sublethal effects of the botanical extracts along with the traditional studies of lethal concentrations in order to comprehensively investigate the future role of the botanical extracts as pesticides. This study reveals the effects of traditionally used medicinal plant extracts harmaline (H) and ricinine (R) either individually or in combination with Bacillus thuringiensis (Bt) on the acute toxicity and sublethal effects on the nutrition and enzyme system of Spodoptera exigua. Harmaline and ricinine caused reduction in the growth of neonate larvae up to 93.12 and 84.31%. The EC50 values of harmaline against fourth and fifth instars were 0.24 and 0.27 mg/ml, but these values remained 0.49 and 0.54 mg/ml against fourth and fifth instars after being treated with ricinine. The combination of harmaline and ricinine with Bt resulted in the increased efficiency of these chemicals as the mortality percentages significantly increased up to 96 and 87.82% in significantly less exposure time in case of H + Bt and R + Bt respectively, as compared to individual treatments. The nutritional analysis revealed the increased toxicity of harmaline and ricinine in combination with Bt, but H + Bt2 showed the higher efficiency with minimal relative consumption rate 2.50 mg/mg/day, relative growth rate 1.16 mg/mg/day and efficiency of conversion of ingested food 29.66% of control, respectively. Changes in antioxidant enzymes such as superoxide dismutase (SOD) and catalases (CAT) were noticed to some extent over different exposure times at all the treatments. The highest SOD (+37.29%) and CAT (+29.27%) activity was observed at the 6th day of treatment with H + R + Bt2. The study clearly shows the significantly increased efficiency of harmaline and ricinine in combination with Bt against S. exigua. This phenomenon can be helpful in order to develop better control strategies against different notorious pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Adamczyk JJ, Williams MR, Reed JT (2003) Spatial and temporal occurrence of beet armyworm (Lepidoptera: Noctuidae) moths in Mississippi. Fla Entomol 86:229–232. doi:10.1653/0015-4040(2003)086[0229:SATOOB]2.0.CO;2

    Article  Google Scholar 

  • Adamski Z, Ziemnicki K (2004) Side-effects of mancozeb on Spodoptera exigua (Hübn.) larvae. J Appl Entomol 128:212–217

    CAS  Google Scholar 

  • Adamski Z, Ziemnicki K, Fila K, Zickic RV, Stajn A (2003) Effects of long term exposure to fenitrothion on Spodoptera exigua and Tenebrio molitor larval development and antioxidant enzyme activity. Biol Lett 40:43–52

    CAS  Google Scholar 

  • Adel M, Sehnal MF, Jurzysta M (2000) Effects of alfalfa saponins on the mot Spodoptera littoralis. J Chem Ecol 26:1065–1078. doi:10.1023/A:1005445217004

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  • Alexenizer M, Dorn A (2007) Screening of medicinal and ornamental plants for insecticidal and growth regulating activity. J Pest Sci 80:205–215. doi:10.1007/s10340-007-0173-x

    Article  Google Scholar 

  • Aouinty B, Oufara S, Mellouki F (2006) Preliminary evaluation of larvicidal activity of aqueous extracts from leaves of Ricinus communis L and from wood of Tetraclinis articulata (Vahl) Mast. On the larvae of mosquito species: Culex pipiens (Linne), Aedes caspius (Pallas), Culiseta longiareolata (Aitken) and Anopheles maculipennis (Meigen). Biotechnol Agron Soc Environ 10:67–71

    Google Scholar 

  • Beauchamp CH, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  • Bobrowski VL, Pasquali G, Bodanese-Zanettini MH, Pinto LMN, Fiuza LM (2002) Characterization of two Bacillus thuringiensis isolates from south Brazil and their toxicity against Anticarsia gemmatalis (Lepidoptera: Noctuidae). Biol Control 25:129–135. doi:10.1016/S1049-9644(02)00055-5

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2000) Possible role of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x

    Article  CAS  Google Scholar 

  • Carlini CR, Grossi-de-sa MF (2002) Plant toxic proteins with insecticidal properties: a review on their potentialities as bioinsecticides. Toxicon 40:1515–1539. doi:10.1016/S0041-0101(02)00240-4

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Gomez LD, Lascano HR, Gonzalez CA, Trippi VS (1997) Inactivation and degradation of Cu/Zn SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol 38:433–440

    CAS  PubMed  Google Scholar 

  • Colom OA, Barrachinal I, Mingol IA, Mas MCG, Sanz PM, Nexke A, Bardon A (2008) Toxic effects of annonaceous acetogenins on Oncopeltus fasciatus. J Pest Sci 81:85–89. doi:10.1007/s10340-007-0189-2

    Article  Google Scholar 

  • Cox PD (2004) Potential for using semi chemicals to protect stored products from insect infestation. J Stored Prod Res 40:1–25. doi:10.1016/S0022-474X(02)00078-4

    Article  CAS  Google Scholar 

  • Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New York

    Google Scholar 

  • Das BC, Sarker PK, Rahman MM (2008) Aphidicidal activity of some indigenous plant extracts against bean aphid Aphis craccivora Koch (Homoptera: Aphididae). J Pest Sci 81:153–159. doi:10.1007/s10340-008-0200-6

    Article  Google Scholar 

  • David W, Ellaby S, Taylor G (1975) Rearing Spodoptera exempta on semi-synthetic diets and on growing maize. Entomol Exp Appl 19:226–236. doi:10.1007/BF00299992

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. doi:10.1146/annurev.ento.52.110405.091440

    Article  CAS  PubMed  Google Scholar 

  • Duke J (2006) Dr. Duke’s phytochemical and ethnobotanical databases. http://www.ars-grin.gov/duke/

  • Ferraz A (1999) Pharmacological evaluation of ricinine, a central nervous system stimulant isolated from Ricinus communis. Pharmacol Biochem Behav 63:367–375. doi:10.1016/S0091-3057(99)00007-6

    Article  CAS  PubMed  Google Scholar 

  • Gould F, Anderson A, Landis D, Van Mellaert J (1991) Feeding behaviour and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations of endotoxins. Entomol Exp Appl 96:199–210. doi:10.1007/BF00366134

    Article  Google Scholar 

  • Grimm C, Schmidli H, Bakker F, Brown K, Campbell P, Candolfi M, Chapman P, Harrison EG, Mead-Briggs M, Schmuck R, Ufer A (2001) Use of standard toxicity tests with Typhlodromus pyri and Aphidius rhopalosiphi to establish a dose-response relationship. J Pest Sci 74:72–84. doi:10.1046/j.1439-0280.2001.01013.x

    Google Scholar 

  • Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6:2675–2683

    CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66. doi:10.1146/annurev.ento.51.110104.151146

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2008) Botanical insecticides: for richer, for poorer. Pest Manage Sci 64:8–11. doi:10.1002/ps.1470

    Article  CAS  Google Scholar 

  • Joanisse DR, Storey KB (1996) Fatty acid content and enzymes of fatty acid metabolism in overwintering cold-hardy gall insects. Physiol Zool 69:1079–1095

    CAS  Google Scholar 

  • Koul O, Shankar JS, Mehta N, Taneja SC, Tripathi AK, Dhar KL (1997) Bioefficacy of crude extracts of Aglaia species (Meliaceae) and some active fractions against lepidopteran larvae. J Appl Entomol 121:245–248

    Article  Google Scholar 

  • Koul O, Kaur H, Goomber S, Wahab S (2004) Bioefficacy and mode of action of rocaglamide from Aglaia elaeagnoidea (Syn. A. roxburghiana) against gram pod borer, Helicoverpa armigera (Hubner). J Appl Entomol 128:177–184

    CAS  Google Scholar 

  • Lamchouri F, Settf A, Cherrah Y, El Hamidi M, Tligui N, Lyoussi B, Hassar M (2002) Experimental toxicity of Peganum harmala seeds. Ann Pharm Fr 60:123–129

    CAS  PubMed  Google Scholar 

  • Li XC, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253. doi:10.1146/annurev.ento.51.110104.151104

    Article  PubMed  Google Scholar 

  • Luo LZ, Cao YZ, Jiang XF (2000) Occurrence characteristics and analysis on trend of Spodoptera exigua (Hübner). Plant Prot 26:37–39

    Google Scholar 

  • Moulton JK, Pepper DA, Dennehy TJ (2000) Beet armyworm (Spodoptera exigua) resistance to spinosad. Pest Manag Sci 56:842–848. doi:10.1002/1526-4998(200010)56:10<842::AID-PS212>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Nathan SS, Kailavani K, Murugan K (2006) Behavioural responses and changes in biology of rice leaffolder following treatment with a combination of bacterial toxins and botanical insecticides. Chemosphere 64:1650–1658. doi:10.1016/j.chemosphere.2006.01.037

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Carpinella M (2006) Naturally occurring bioactive compounds. Elsevier, Amsterdam

    Google Scholar 

  • SAS Institute (2000) SAS user’s guide: statistics. SAS Institute, Cary

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed  Google Scholar 

  • Shimada K, Natsuhara K, Oomori Y, Miyata T (2005) Permethrin resistance mechanisms in the beet armyworm (Spodoptera exigua) (Hübner). J Pest Sci 30:214–219. doi:10.1584/jpestics.30.214

    Article  CAS  Google Scholar 

  • Sowjanya SK, Padmaja V (2008) Destruxin from Metarhizium anisopliae induces oxidative stress effecting larval mortality of the polyphagous pest Spodoptera litura. J Appl Entomol 132:68–78. doi:10.1111/j.1439-0418.2007.01239.x

    Article  Google Scholar 

  • Suzuki T, Nojiri H, Isono H, Ochi T (2004) Oxidative damages in isolated rat hepatocytes treated with the organochlorine fungicides captan, dichlofluanid and chlorothalonil. Toxicology 204:97–107. doi:10.1016/j.tox.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  • Timmins WA, Reynolds SE (1992) Azadirachtin inhibits secretion of trypsin in midgut of Manduca sexta caterpillars: reduced growth due to impaired protein digestion. Entomol Exp Appl 63:47–54. doi:10.1007/BF00350345

    Article  CAS  Google Scholar 

  • Ujvary I (2002) Transforming natural products into natural pesticides experience and expectations. Phytoparasitica 30:1–4. doi:10.1007/BF02979747

    Article  Google Scholar 

  • Ulrichs C, Mewis I, Adhikary S, Bhattacharyya A, Goswami A (2008) Antifeedant activity and toxicity of leaf extracts from Porteresia coarctata Takeoka and their effects on the physiology of Spodoptera litura (F.). J Pest Sci 81:79–84. doi:10.1007/s10340-007-0187-4

    Article  Google Scholar 

  • Wang KY, Jiang XY, Yi MQ, Chen BK (2001) Studies on resistance change and management strategy of Spodoptera exigua (Hübner). Chin J Pest 40:29–32

    Google Scholar 

  • Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar type proton pump energizes H+/K+ antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    Google Scholar 

  • Wu SC, Gu YZ, Sheng ZL, Zheng HZ (1995) Monitoring of insecticides resistance and chemical control in beet army moth. Acta Phytophyl Sin 22:95–96

    Google Scholar 

  • Yang Y, Wu Y, Chen S, Devine GJ, Denholm I, Jewess P, Moores GD (2004) The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem Mol Biol 34:763–773. doi:10.1016/j.ibmb.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Xu H, Gao X, Hu M, Xu Q (2007) Study on the extraction, purification, re-composition of the ricinine and its insecticidal effects. Nat Prod Res Dev 19:85–90

    Google Scholar 

  • Zhong ZH, Liu JX, Weng QF, Hu MY, Luo JJ (2006) Laboratory and field evaluations of rhodojaponin-III against the imported cabbage worm Pieris rapae (L) (Lepidoptera: Pieridae). Pest Manage Sci 62:976–981. doi:10.1002/ps.1267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the role of National Science Foundation of People’s Republic of China for funding this work under the grant no. 30671387. The authors also thank the support from Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (FANEDD, NO. 2004061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Ying Hu.

Additional information

Communicated by M. Brownbridge and N. Desneux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizwan-ul-Haq, M., Hu, Q.B., Hu, M.Y. et al. Biological impact of harmaline, ricinine and their combined effects with Bacillus thuringiensis on Spodoptera exigua (Lepidoptera: Noctuidae). J Pest Sci 82, 327–334 (2009). https://doi.org/10.1007/s10340-009-0257-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-009-0257-x

Keywords

Navigation