Skip to main content

Advertisement

Log in

Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Displacement studies have clearly shown that experienced avian migrants are able to perform true navigation, i.e., they can find the correct direction leading to a target destination from unfamiliar sites. The sensory mechanisms of true navigation remain poorly understood, though some remarkable progress has been made in the last 10–15 years. There are two primary hypotheses explaining the sensory nature of navigation: (1) a magnetic map hypothesis proposes that birds use parameters of the geomagnetic field that are predictably distributed on the globe. As for the sensory nature of this hypothesis, it has been assumed by some researchers that the magnetic receptor cells reside in the upper beak (the so-called “beak organ”), and transmit information via the trigeminal nerve to the brain; (2) an olfactory map hypothesis assumes that birds can smell their position by taking advantage of odours distributed in the atmosphere. There are a growing number of studies supporting both of the hypotheses mentioned though in different avian model species. In this review, an attempt is made to provide an overview of the evidence for different navigational cues proposed thus far, with the main focus on the recent studies addressing the magnetic and olfactory navigation hypotheses. Also, a list of key open questions, together with possible experimental approaches, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Able KP, Cherry JD (1986) Mechanisms of dusk orientation in white-throated sparrows (Zonotrichia albicollis): clock-shift experiments. J Comp Physiol A 159:107–113

    Article  Google Scholar 

  • Able KP, Dillon PM (1977) Sun compass orientation in a nocturnal migrant white-throated sparrow. Condor 79:393–395

    Article  Google Scholar 

  • Åkesson S (1993) Coastal migration and wind drift compensation in nocturnal passerine migrants. Ornis Scand 24:87–94

    Article  Google Scholar 

  • Alerstam T, Hake M, Kjellen N (2006) Temporal and spatial patterns of repeated migratory journeys by ospreys. Anim Behav 71:555–566

    Article  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Beason R, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    PubMed  Google Scholar 

  • Becker J, van Raden H (1986) Meteorologische Gesichtspunkte zur olfaktorischen Navigationshypothese. J Ornithol 127:1–8

    Article  Google Scholar 

  • Benhamou S (1997) On systems of reference involved in spatial memory. Behav Process 40:149–163

    Article  CAS  Google Scholar 

  • Benhamou S (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 225:235–239

    Article  PubMed  Google Scholar 

  • Benhamou S, Bovet P (1989) How animals use their environment: a new look at kinesis. Anim Behav 38:375–383

    Article  Google Scholar 

  • Benhamou S, Bonadonna F, Jouventin P (2003) Successful homing of magnet-carrying white-chinned petrels released in the open sea. Anim Behav 65:729–734

    Article  Google Scholar 

  • Benvenuti S, Brown IA (1989) The influence of olfactory deprivation on homing of experienced and inexperienced American pigeons. Behaviour 111:113–128

    Article  Google Scholar 

  • Berthold P (1988) Evolutionary aspects of migratory behavior in European warblers. J Evol Biol 1:195–209

    Article  Google Scholar 

  • Berthold P, Querner U (1981) Genetic basis of migratory behavior in European warblers. Science 212:77–79

    Article  PubMed  CAS  Google Scholar 

  • Berthold P, Wiltschko W, Miltenberger H, Querner U (1990) Genetic transmission of migratory behavior into a non-migratory bird population. Experientia 46:107–108

    Article  Google Scholar 

  • Blaser N, Guskov SI, Meskenaite V, Kanevskyi VA, Lipp H-P (2013) Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study. PLoS One 8:e77102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaser N, Guskov SI, Entin VA, Wolfer DP, Kanevskyi VA, Lipp H-P (2014) Gravity anomalies without geomagnetic disturbances interfere with pigeon homing – a GPS tracking study. J Exp Biol 217:4057–4067

    Article  PubMed  Google Scholar 

  • Bonadonna F, Chamaille-Jammes S, Pinaud D, Weimerskirch H (2003) Magnetic cues: are they important in black-browed albatross Diomedea malanophris orientation? Ibis 145:152–155

    Article  Google Scholar 

  • Boström JE, Åkesson S, Alerstam T (2012) Where on earth can animals use a geomagnetic bi-coordinate map for navigation? Ecography 35:1039–1047

    Article  Google Scholar 

  • Bubień-Waluszewska A (1981) The cranial nerves. In: King AS, McLelland J (eds) Form and function in birds, vol 2. Academic Press, New York, pp 385–438

    Google Scholar 

  • Cadiou H, McNaughton PA (2010) Avian magnetite-based magnetoreception: a physiologist’s perspective. J R Soc Interface 7:S193–S205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chernetsov N, Kishkinev D, Mouritsen H (2008) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190

    Article  PubMed  CAS  Google Scholar 

  • Cygnar KD, Stephan AB, Zhao H (2010) Analyzing responses of mouse olfactory sensory neurons using the air-phase electroolfactogram recording. J Vis Exp 37:e1850

    Google Scholar 

  • de la Iglesia HO, Cambras T, Schwartz WJ, Díez-Noguera A (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 14:796–800

    Article  PubMed  CAS  Google Scholar 

  • Delahunty CM, Eyres G, Dufour J-P (2006) Gas chromatography-olfactometry. J Sep Sci 29:2107–2125

    Article  PubMed  CAS  Google Scholar 

  • Delmore KE, Irwin DE (2014) Hybrid songbirds employ intermediate routes in a migratory divide. Ecol Lett 17:1211–1218

    Article  PubMed  Google Scholar 

  • Deutschlander ME, Phillips JB, Munro U (2012) Age-dependent orientation to magnetically-simulated geographic displacements in migratory Australian silvereyes (Zosterops l. lateralis). Wils J Ornithol 124:467–477

    Article  Google Scholar 

  • Dornfeldt K (1991) Pigeon homing in relation to geomagnetic, gravitational, topographical, and meteorological conditions. Behav Ecol Sociobiol 28:107–123

    Article  Google Scholar 

  • Dubbeldam JL, Brauch CSM, Don A (1981) Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynos L.: the afferents and organisation of the nucleus basalis. J Comp Neurol 196:391–405

    Article  PubMed  CAS  Google Scholar 

  • Edelman NB, Fritz T, Nimpf S, Pichler P, Lauwers M et al (2014) No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc Natl Acad Sci 112:262–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emlen ST (1967a) Migratory orientation in the indigo bunting, Passerina cyanea. Part I: evidence for use of celestial cues. Auk 84:309–342

    Article  Google Scholar 

  • Emlen ST (1967b) Migratory orientation in the indigo bunting, Passerina cyanea. Part II: mechanism of celestial orientation. Auk 84:463–489

    Article  Google Scholar 

  • Emlen ST (1975) The stellar-orientation system of a migratory bird. Sci Am 233:102–111

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P et al (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS One 5:e9231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiaschi V, Farina M, Ioalè P (1974) Homing experiments on swifts Apus apus (L.) deprived of olfactory perception. Monit Zool Ital 8:235–244

    Google Scholar 

  • Fischer RG, Kastler J, Ballschmiter K (2000) Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean. J Geophys Res 10:14473–14494

    Article  Google Scholar 

  • Fischer JH, Munro U, Phillips JB (2003) Magnetic navigation by an avian migrant? In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer Verlag, Berlin, Heidelberg, pp 423–432

    Chapter  Google Scholar 

  • Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G et al (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Article  PubMed  CAS  Google Scholar 

  • Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwiss 94:631–642

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216:2165–2171

    Article  PubMed  Google Scholar 

  • Gagliardo A, Odetti F, Ioalè P (2001) Relevance of visual cues for orientation at familiar sites by homing pigeons: an experiment in a circular arena. Proc R Soc B 268:2065–2070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild JM (2006) Having the nerve to home: trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. J Exp Biol 209:2888–2892

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild JM (2008) Navigational abilities of homing pigeons deprived of olfactory or trigeminally mediated magnetic information when young. J Exp Biol 211:2046–2051

    Article  PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Savini M, Wild JM (2009) Navigational abilities of adult and experienced homing pigeons deprived of olfactory or trigeminally mediated magnetic information. J Exp Biol 212:3119–3124

    Article  PubMed  Google Scholar 

  • Gagliardo A, Ioalè P, Filaninno C, Wikelski M (2011) Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS data loggers. PLoS One 6:e22385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagliardo A, Bried J, Lambardi P, Luschi P, Wikelski M, Bonadonna F (2013) Oceanic navigation in Cory’s shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. J Exp Biol 216:2798–2805

    Article  PubMed  Google Scholar 

  • Gottschaldt K-M (1985) Structure and function of avian somatosensory receptors. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic Press, New York, pp 375–461

    Google Scholar 

  • Gould JL (1980) The case of magnetic sensitivity in birds and bees (such as it is). Am Sci 68:256–267

    Google Scholar 

  • Griffin DR (1952) Bird navigation. Biol Rev Cambr Philos Soc Lond 27:359–400

    Article  Google Scholar 

  • Gschweng M, Kalko EKV, Querner U, Fiedler W, Berthold P (2008) All across Africa: highly individual migration routes of Eleonora’s falcon. Proc R Soc B 275:2887–2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilford T, Biro D (2014) Route following and the pigeon’s familiar area map. J Exp Biol 217:169–179

    Article  PubMed  Google Scholar 

  • Guilford T, Taylor GK (2014) The sun compass revisited. Anim Behav 97:135–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwinner E (1996a) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    PubMed  Google Scholar 

  • Gwinner E (1996b) Circannual clocks in avian reproduction and migration. Ibis 138:47–63

    Article  Google Scholar 

  • Gwinner E (2003) Circannual rhythms in birds. Curr Opin Neurobiol 13:770–778

    Article  PubMed  CAS  Google Scholar 

  • Hagstrum JT (2000) Infrasound and the avian navigational map. J Exp Biol 203:1103–1111

    PubMed  CAS  Google Scholar 

  • Hagstrum JT (2001) Infrasound and the avian navigational map. J Nav 54:377–391

    Google Scholar 

  • Hagstrum JT (2013) Atmospheric propagation modeling indicates homing pigeons use loft-specific infrasonic’map’ cues. J Exp Biol 216:687–699

    Article  PubMed  Google Scholar 

  • Hanzlik M, Heunemann C, Holtkamp-Rötzler E, Winklhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals 13:325–331

    Article  PubMed  CAS  Google Scholar 

  • Helbig AJ (1991) Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla). Behav Ecol Sociobiol 28:9–12

    Article  Google Scholar 

  • Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H (2010) Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc Natl Acad Sci USA 107:9394–9399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of earth’s gravity field. Geophys Res Lett 40:4279–4283

    Article  Google Scholar 

  • Holland RA (2010) Differential effects of magnetic pulses on the departure directions of naturally migrating birds. J R Soc Interface 7:1617–1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland RA, Thorup K, Gagliardo A, Bisson IA, Knecht E et al (2009) Testing the role of sensory systems in the migratory heading of a songbird. J Exp Biol 212:4065–4071

    Article  PubMed  CAS  Google Scholar 

  • Ioalè P (1983) Effect of anaesthesia of the nasal mucosae on the homing behaviour of pigeons. Z Tierpsychol 61:102–110

    Google Scholar 

  • Ioalè P, Wallraff HG, Papi F, Foà A (1983) Long-distance releases to determine the spatial range of pigeon navigation. Comp Biochem Physiol 76A:733–742

    Article  Google Scholar 

  • Ioalè P, Nozzolini M, Papi F (1990) Homing pigeons do extract directional information from olfactory stimuli. Behav Ecol Sociobiol 26:301–305

    Article  Google Scholar 

  • Jorge PE, Marques AE, Phillips JB (2009) Activational rather than navigational effects of odours on homing of young pigeons. Curr Biol 19:650–654

    Article  PubMed  CAS  Google Scholar 

  • Jorge PE, Marques AE, Phillips (2010) Activational effects of odours on avian navigation. Proc R Soc B 277:45–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanevskyi VA, Sitnik KM, Sheliag-Sosonko JP, Melnikov DI, Dima AG et al (1985) The use of biotelemetry in remote sensing of geophysical parameters. Rep Acad Sci USSR 282:291–294

    Google Scholar 

  • Kishkinev D, Chernetsov N (2015) Magnetoreception systems in birds. Biol Bull Rev 5:46–62. doi:10.1134/S2079086415010041

    Article  Google Scholar 

  • Kishkinev D, Chernetsov N, Mouritsen H (2010) A double clock or jetlag mechanism is unlikely to be involved in detection of east-west displacements in a long-distance avian migrant. Auk 127:773–780

    Article  Google Scholar 

  • Kishkinev D, Mora CV, Mouritsen H (2012) An attempt to develop an operant conditioning paradigm to test for magnetic discrimination behaviour in a migratory songbird. J Ornithol 153:1165–1177

    Article  Google Scholar 

  • Kishkinev D, Chernetsov N, Heyers D, Mouritsen H (2013) Migratory reed warblers need intact trigeminal nerve to correct for a 1,000 km eastward displacement. PLoS ONE 8:e65847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer G (1950a) Orientierte Zugaktivität gekäfigter Singvögel. Naturwiss 37:188

    Article  Google Scholar 

  • Kramer G (1950b) Weitere analyse der Faktoren, welche die Zugaktivität des gekäfigten Vögels orientieren. Naturwiss 37:377–378

    Article  Google Scholar 

  • Kramer G (1953) Wird die Sonnehöhe bei der Heimfindeorientierung verwertet? J Ornithol 94:201–219

    Article  Google Scholar 

  • Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc B 270:373–378

    Article  PubMed  PubMed Central  Google Scholar 

  • Kullberg C, Henshaw I, Jakobsson S, Johansson P, Fransson T (2007) Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc R Soc B 274:2145–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin T, Keeton WT (1978) An apparent lunar rhythm in the day-to-day variations in initial bearings of homing pigeons. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer-Verlag, Berlin, New York, pp 92–106

    Chapter  Google Scholar 

  • Lauwers M, Pichler P, Edelman NB, Resch GP, Ushakova L et al (2013) An iron-rich organelle in the cuticular plate of avian hair cells. Curr Biol 23:924–929

    Article  PubMed  CAS  Google Scholar 

  • Lednor AJ, Walcott C (1984) The orientation of pigeons at gravity anomalies. J Exp Biol 111:259–263

    Google Scholar 

  • Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H (2014) Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). J R Soc Interface 11:20140777

    Article  PubMed  PubMed Central  Google Scholar 

  • Liedvogel M, Akesson S, Bensch S (2011) The genetics of migration on the move. Trends Ecol Evol 26:561–569

    Article  PubMed  Google Scholar 

  • Massa B, Benvenuti S, Ioalè P, Lo Valvo M, Papi F (1991) Homing in Cory’s shearwater (Calonectris diomedea) carrying magnets. Boll Zoll 58:245–247

    Article  Google Scholar 

  • Matthews GVT (1951) The experimental investigation of navigation in homing pigeons. J Exp Biol 28:508–536

    Google Scholar 

  • Matthews GVT (1953) Sun navigation in homing pigeons. J Exp Biol 30:243–267

    Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nature Rev Immunol 5:606–616

    Article  CAS  Google Scholar 

  • Meschini E (1983) Pigeon navigation: some experiments on the importance of olfactory cues at short distances from the loft. J Comp Physiol 150:493–498

    Article  Google Scholar 

  • Mewaldt R (1964) California sparrows return from displacement to Maryland. Science 146:941–942

    Article  PubMed  CAS  Google Scholar 

  • Moore BR (1988) Magnetic fields and orientation in homing pigeons: experiments of the late W.T Keeton. Proc Natl Acad Sci USA 85:4907–4909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mora CV, Walker MM (2012) Consistent effect of an attached magnet on the initial orientation of homing pigeons, Columba livia. Anim Behav 84:377–383

    Article  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H (2003) Spatiotemporal orientation strategies of long-distance migrants. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian Migration. Springer Verlag, Berlin, Heidelberg, pp 493–513

    Chapter  Google Scholar 

  • Mouritsen H, Hore PJ (2012) The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr Opin Neurobiol 22:343–352

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen H, Larsen ON (2001) Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass. J Exp Biol 204:3855–3865

    PubMed  CAS  Google Scholar 

  • Mouritsen H, Huyvaert KP, Frost BJ, Anderson DJ (2003) Waved albatrosses can navigate with strong magnets attached to their head. J Exp Biol 206:4155–4166

    Article  PubMed  Google Scholar 

  • Muheim R, Åkesson S (2002) Clock-shift experiments with Savannah sparrows, Passerculus sandwichensis, at high northern latitudes. Behav Ecol Sociobiol 51:394–401

    Article  Google Scholar 

  • Nevitt G (2008) Sensory ecology on the high seas: the odour world of the Procellariiform seabirds. J Exp Biol 211:1706–1713

    Article  PubMed  Google Scholar 

  • Newton I (2008) The migration biology of birds. Academic Press, London

    Google Scholar 

  • Papi F (1975) La navigazione dei colombi viaggiatori. Le Scienze 78:66–75

    Google Scholar 

  • Papi F (1976) The olfactory navigation system of homing pigeons. Verh Dtsch Zool Ges 69:184–205

    Google Scholar 

  • Papi F, Fiore L, Fiaschi V, Benvenuti S (1972) Olfaction and homing in pigeons. Monit Zool Ital 6:85–95

    Google Scholar 

  • Papi F, Ioalè P, Fiaschi V, Benvenuti S, Baldaccini NE (1974) Olfactory navigation of pigeons: the effect of treatment with odourous air currents. J Comp Physiol 94:187–193

    Article  Google Scholar 

  • Pennycuick CJ (1960) The physical basis of astronavigation in birds: theoretical considerations. J Exp Biol 37:573–593

    Google Scholar 

  • Pennycuick CJ (1961) Sun navigation in birds? Nature 190:1127–1128

    Article  Google Scholar 

  • Perdeck AC (1958) Two types of orientation in migrating starlings, Sturnus vulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 46:1–37

    Google Scholar 

  • Perdeck A (1983) An experiment on the orientation of juvenile starlings during spring migration: an addendum. Ardea 71:255

    Google Scholar 

  • Phillip JB (1996) Magnetic navigation. J Theor Biol 180:309–319

    Article  Google Scholar 

  • Piggins HD, Loudon (2005) Circadian biology: clocks within clocks. Curr Biol 15:R455–R457

    Article  PubMed  CAS  Google Scholar 

  • Postlethwaite CM, Walker MM (2011) A geometric model for initial orientation errors in pigeon navigation. J Theor Biol 269:273–279

    Article  PubMed  Google Scholar 

  • Rabøl J (1998) Star navigation in Pied Flycatchers Ficedula hypoleuca and redstarts Phoenicurus phoenicurus. Dansk Ornitologisk Forenings Tidsskrift 92:283–289

    Google Scholar 

  • Rehkämper G, Frahm H, Cnotka J (2008) Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain Behav Evol 71:115–126

    Article  PubMed  Google Scholar 

  • Reilly IW (2002) Magnetic position determination by homing pigeons? J Theor Biol 218:47–54

    Article  Google Scholar 

  • Renfrew RB, Kim D, Perlut N, Smith J, Fox J, Marra PP (2013) Phenological matching across hemispheres in a long-distance migratory bird. Divers Distrib 19:1008–1019

    Article  Google Scholar 

  • Sauer F (1957) Die Sternenorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin and curruca). Z Tierpsychol 14:29–70

    Google Scholar 

  • Sauer FEG, Sauer EM (1960) Star navigation of nocturnal migrating birds: the 1958 planetarium experiments. Cold Spring Harb Symp Quant Biol 25:463–473

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Koenig K (1960) The sun azimuth compass: one factor in the orientation of homing pigeons. Science 131:826–827

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Koenig K, Ganzhorn JU, Ranvaud R (1991) The sun compass. Experientia Supplementum 60:1–15

    Article  CAS  Google Scholar 

  • Smith AD, Paton PW, McWilliams SR (2014) Using nocturnal flight calls to assess the fall migration of warblers and sparrows along a coastal ecological barrier. PLoS One 9:e92218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sokolov L (1997) Philopatry of migratory birds. In: Turpaev TM (ed) Physiology and general biology reviews,v. 11. Harwood Academic Press, Amsterdam, pp 1–58

    Google Scholar 

  • Stanley CQ, MacPherson M, Fraser KC, McKinnon EA, Stutchbury BJM (2012) Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS One 7:e40688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Streng A, Wallraff HG (1992) Attempts to determine the roles of visual and olfactory inputs in initial orientation and homing of pigeons over familiar terrain. Ethology 91:203–219

    Article  Google Scholar 

  • Thorup K, Bisson I-A, Bowlin MS, Holland RA, Wingfield JC et al (2007) Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc Natl Acad Sci USA 104:18115–18119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorup K, Ortvad TE, Rabøl J, Holland RA, Tøttrup AP, Wikelski M (2011) Juvenile songbirds compensate for displacement to oceanic islands during autumn migration. PLoS One 6:e17903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C et al (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370

    PubMed  CAS  Google Scholar 

  • Vardanis Y, Klaassen RHG, Strandberg R, Alerstam T (2011) Individuality in bird migration: routes and timing. Biol Lett 7:502–505

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss HU, Salgado-Commissariat D, Helekar SA (2011) Altered auditory BOLD Response to conspecific birdsong in zebra finches with stuttered syllables. PLoS One 5:e14415

    Article  CAS  Google Scholar 

  • Walcott C, Green RP (1974) Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:180–182

    Article  PubMed  CAS  Google Scholar 

  • Waldvogel JA (1987) Olfactory navigation in homing pigeons: are the current models atmospherically realistic? Auk 104:369–379

    Article  Google Scholar 

  • Walker MM (1998) On a wing and a vector: a model for magnetic navigation by homing pigeons. J Theor Biol 192:341–349

    Article  PubMed  Google Scholar 

  • Wallraff HG (1960) Können Grasmücken mit Hilfe des Sternenhimmels navigieren? (kritische Bearbeitung einiger Planetariumsversuche von F. Sauer). Z Tierpsychol 17:165–177

    Article  Google Scholar 

  • Wallraff HG (1974) Das Navigationssytem der Vögel. Oldenburg Verlag, Munich

    Google Scholar 

  • Wallraff HG (1980) Olfaction and homing in pigeons: nerve-section experiments, critique hypotheses. J Comp Physiol A 139:209–224

    Article  Google Scholar 

  • Wallraff HG (1981) The olfactory component of pigeon navigation: steps and analysis. J Comp Physiol 143:411–422

    Article  Google Scholar 

  • Wallraff HG (1982) Homing to Würzburg: an interim report on long-term analyses of pigeon navigation. In: Papi F, Wallraff HG (eds) Avian navigation. Springer Verlag, Berlin, Heidelberg, New York, pp 211–221

    Chapter  Google Scholar 

  • Wallraff HG (1999) The magnetic map of homing pigeons: an evergreen phantom. J Theor Biol 197:265–269

    Article  PubMed  Google Scholar 

  • Wallraff HG (2000) Path integration by passively displaced homing pigeons? Anim Behav 60:F30–F36

    Article  Google Scholar 

  • Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204

    Article  Google Scholar 

  • Wallraff HG (2005) Avian navigation: pigeon homing as a paradigm. Springer Verlag, Berlin

    Google Scholar 

  • Wallraff HG (2013) Ratios among atmospheric trace gases together with winds imply exploitable information for bird navigation: a model elucidating experimental results. Biogeosci Discuss 10:12451–12489

    Article  Google Scholar 

  • Wallraff HG, Andreae MO (2000) Spatial gradients in ratios of atmospheric trace gasses: a study stimulated by experiments on bird navigation. Tellus 52B:1138–1157

    Article  CAS  Google Scholar 

  • Wallraff HG, Kiepenheuer J, Neumann MF, Streng A (1995) Homing experiments with starlings deprived of the sense of smell. Condor 97:20–26

    Article  Google Scholar 

  • Wang J, Pantopoulos K (2011) Regulation of cellular ironmetabolism. Biochem J 434:365–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weller R, Schrems O, Boddenberg A, Gäb S, Gautrois M (2000) Meridional distribution of hydroperoxides and formaldehyde in the marine boundary layer of the Atlantic (48°N–35°S) measured during the Albatross campaign. J Geophys Res 105:14401–14412

    Article  CAS  Google Scholar 

  • Willemoes M, Strandberg R, Klaassen RHG, Tøttrup AP, Vardanis Y et al (2014) Narrow-front loop migration in a population of the Common Cuckoo Cuculus canorus, as revealed by satellite telemetry. PLoS One 9:e83515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiltschko R, Nehmzow U (2005) Simulating pigeon navigation. Anim Behav 69:813–826

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R, Jahnel M (1987) The orientation behaviour of anosmic pigeons in Frankfurt aM, Germany. Anim Behav 35:1324–1333

    Article  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (1993) Red light disrupts magnetic orientation of migratory birds. Nature 364:525–527

    Article  Google Scholar 

  • Wiltschko W, Munro U, Beason RC, Ford H, Wiltschko R (1994) A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50:697–700

    Article  Google Scholar 

  • Wiltschko W, Ford H, Munro U, Winklhofer M, Wiltschko R (2007) Magnetite-based magnetoreception: the effect of repeated pulsing on the orientation of migratory birds. J Comp Physiol A 193:515–522

    Article  Google Scholar 

  • Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010) The role of the magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:1534–1538

    Article  PubMed  CAS  Google Scholar 

  • Wu LQ, Dickman JD (2011) Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr Biol 21:418–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu LQ, Dickman JD (2012) Neural correlates of a magnetic sense. Science 336:1054–1057

    Article  PubMed  CAS  Google Scholar 

  • Zapka M, Heyers D, Hein CM, Engels S, Schneider N-L et al (2009) Visual, but not trigeminal, mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kishkinev.

Additional information

Communicated by E. Matthysen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishkinev, D. Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J Ornithol 156 (Suppl 1), 145–161 (2015). https://doi.org/10.1007/s10336-015-1215-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1215-4

Keywords

Navigation