Skip to main content
Log in

Substantial amounts of carbon are sequestered during dry periods in an old-growth subtropical forest in South China

  • Special Feature: Original Article
  • Lessons learned from CarboEastAsia: Carbon and water cycles in East Asian terrestrial ecosystems
  • Published:
Journal of Forest Research

Abstract

A number of continuous eddy covariance measurements and long-term biomass inventories had proved that old-growth forests are carbon sinks worldwide. The present study estimated the net ecosystem productivity (NEP) for an old-growth subtropical forest at the Dinghushan Biosphere Reserve in South China to investigate the temporal pattern of carbon sequestration, both seasonally and annually. The measured NEP over 7 years (from 2003 to 2009) showed that this forest was a net carbon sink, ranging from 230 (in 2008) to 489 g C m−2 year−1 (in 2004). The greatest value of NEP was found in the driest year and the lowest value in the wettest year during the study period. Within a year, NEP during the dry season was about 81.4 % higher than for the wet season. Accordingly, the dry season at seasonal scale and dry years at interannual scale are key periods for carbon sequestration in this forest. The strong seasonality of ecosystem or soil respiration (ER or SR) compared with gross primary productivity (GPP) resulted in substantial amounts of carbon being sequestered during dry seasons. A decrease of GPP and an increase of ER or SR demonstrated the lower carbon uptake in rainy years. From this study, we conclude that GPP and living biomass carbon increment are not overriding parameters controlling NEP. The variations in ER or SR driven by the rainfall scheme were the dominant factor determining the magnitude of NEP in this forest in South China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldocchi D, Finnigan J, Wilson K, Paw UKT, Falge E (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Bound Lay Meteorol 96:257–291

    Article  Google Scholar 

  • Bleby TM, Mcelrone AJ, Jackson RB (2010) Water uptake and hydraulic redistribution across large woody root systems to 20 m depth. Plant Cell Environ 33:2132–2148

    Article  PubMed  Google Scholar 

  • Botta A, Ramankutty N, Foley JA (2002) Long-term variations of climate and carbon fluxes over the Amazon basin. Geophys Res Lett 29:1319

    Article  Google Scholar 

  • Carrara A, Kowalski AS, Neirynck J, Janssens IA, Curiel Yuste J, Ceulemans R (2003) Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric Forest Meteorol 119:209–227

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, Noblet ND, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  PubMed  CAS  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Chang Biol 13:577–590

    Article  Google Scholar 

  • Eamus D, Prior LD (2001) Ecophysiology of trees of seasonally dry tropics: comparisons among phonologies. Adv Ecol Res 32:113–197

    Article  CAS  Google Scholar 

  • Falge E, Baldocchi DD, Olson RJ, Anthoni P, Aubinet M, Bemhofer C, Burba G, Ceulemans R, Clement RJ, Dolman AJ, Granier A, Gross P, Grünwald T, Hollinger DY, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moores E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy SC (2001) Gapfilling strategies for defensible annual sums of net ecosystem exchange. Agric Forest Meteorol 107:43–69

    Article  Google Scholar 

  • Falk M, Wharton S, Schroeder M, Ustin S, Paw UKT (2008) Flux partitioning in an old-growth forest: seasonal and interannual dynamics. Tree Physiol 28:509–520

    Article  PubMed  CAS  Google Scholar 

  • Fang YT, MO JM, Peng SL, Li DJ (2003) Role of forest succession on carbon sequestration of forest ecosystems in lower subtropical China. Acta Ecol Sin 23:1685–1694 (in Chinese with English summary)

    Google Scholar 

  • Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271:1576–1578

    Article  CAS  Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368

    Article  PubMed  CAS  Google Scholar 

  • Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994) Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75:134–150

    Article  Google Scholar 

  • Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, de Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res 112:G03008. doi:10.1029/2006JG000365

    Article  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  PubMed  CAS  Google Scholar 

  • Jarvis PG, Morison JL, Chaloner WG, Cannell MR, Roberts J, Jones HG, Amtmann R (1989) Atmospheric carbon dioxide and forests. Philos Trans R Soc Lond Ser B 324:369–392

    Article  Google Scholar 

  • Knohl A, Schulze ED, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric Forest Meteorol 118:151–167

    Article  Google Scholar 

  • Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D, Nik AR (2008) CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia. Agric Forest Meteorol 148:439–452

    Article  Google Scholar 

  • Krishnan P, Black TA, Grant NJ, Barr AG, Hogg EH, Jassal RS, Morgenstern K (2006) Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric Forest Meteorol 139:208–223

    Article  Google Scholar 

  • Krishnan P, Black TA, Barr AG, Grant NJ, Gaumont-Guay D, Nesic Z (2008) Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. J Geophys Res 113:D09109. doi:10.1029/2007JD008965

    Article  Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo MN, Ewango CN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana JR, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KH, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Woll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhou G, Zhang D, Wenigmann KO, Otieno D, Tenhunen J, Zhang Q, Yan J (2012) Quantification of ecosystem carbon exchange characteristics in a dominant subtropical evergreen forest ecosystem. Asia Pac J Atmos Sci. doi:10.1007/s13143-012-0001-y

    Google Scholar 

  • Liu S, Luo Y, Huang YH, Zhou GY (2007) Studies on the community biomass and its allocations of five forest types in Dinghushan Nature Reserve. Ecol Sci 26:387–393 (in Chinese with English summary)

    CAS  Google Scholar 

  • Loescher HW, Oberbauer SF, Gholz HL, Clark DB (2003) Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Chang Biol 9:396–412

    Article  Google Scholar 

  • Luyssaert S, Schulze E, Borner A, Knohl A, Hessenmoller D, Law B, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    Article  PubMed  CAS  Google Scholar 

  • Melillo JM, Prentice IC, Farquhar GD, Schulze ED, Sala OE (1996) Terrestrial biotic responses to environmental change and feedbacks to climate. In climate change 1995: the science of climate change. Cambridge University Press, New York, pp 444–481

  • Odum P (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363

    Article  PubMed  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Núòez PV, Vásquez RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  PubMed  CAS  Google Scholar 

  • Richard PW (1996) The tropical rain forest: an ecological study, 2nd edn. Cambridge University Press, London

    Google Scholar 

  • Richardson AD, Hollinger DY, Aber J, Ollinger SV, Braswell B (2007) Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Global Chang Biol 13:788–803

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha H, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon fluxes in old-growth Amazonian rainforest: seasonality and disturbance-induced net carbon loss. Science 302:1554–1557

    Article  PubMed  CAS  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang JY, McCarthy HR, Kim HS, Oishi AC, Oren R (2005) Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiol 25:887–902

    Article  PubMed  Google Scholar 

  • Stoy PC, Richardson AD, Baldocchi DD, Katul GG, Stanovick J, Mahecha MD, Reichstein M, Detto M, Law BE, Wohlfahrt G, Arriga N, Campos J, McCaughey JH, Montagnani L, Paw UKT, Sevanto S, Williams M (2009) Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences 6:2297–2312

    Article  CAS  Google Scholar 

  • Tan ZH, Zhang YP, Schaefer D, Yu GR, Liang NS, Song QH (2011) An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos Environ 48:1548–1554

    Article  Google Scholar 

  • Tang XL, Wang YP, Zhou GY, Zhang DQ, Liu S, Liu SZ, Zhang QM, Liu JX, Yan JH (2011) Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in Southern China. Plant Ecol 212:1385–1395

    Article  Google Scholar 

  • Tian HQ, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JK, Moore B, Vorosmarty CJ (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667

    Article  CAS  Google Scholar 

  • Vourlitis GL, Filho NP, Hayashi MMS, Nogueira JdS, Raiter F, Hoegel W, Campelo JHJ (2004) Effects of meteorological variations on the CO2 exchange of a Brazilian transitional tropical forest. Ecol Appl 14:89–100

    Article  Google Scholar 

  • Wang YS, Wang YH (2003) Quick measurement of CH4, CO2 and N2O emission from a short-plant ecosystem. Adv Atmos Sci 20:842–844

    Article  Google Scholar 

  • Wang B, Yang XS (2009) Comparison of biomass and species diversity of four typical zonal vegetations. J Fujian Coll Forest 29:345–350 (in Chinese with English summary)

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurement for density effects due to heat and water vapor transfer. Q J R Meteorol Soc 106:85–100

    Article  Google Scholar 

  • Welp LR, Randerson JT, Liu HP (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric Forest Meteorol 147:172–185

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound Lay Meteorol 99:127–150

    Article  Google Scholar 

  • Yamamoto S, Saigusa N, Gamo M, Fujinuma Y, Inoue G, Hirano T (2005) Findings through the AsiaFlux network and a review toward the future. J Geogr Sci 15:142–148

    Google Scholar 

  • Yan JH, Wang YP, Zhou GY, Zhang DQ (2006) Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Chang Biol 12:810–821

    Article  Google Scholar 

  • Yan JH, Zhang DQ, Zhou GY, Liu JX (2009) Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve. Soil Biol Biochem 41:991–999

    Article  CAS  Google Scholar 

  • Yu GR, Wen XF, Sun XM, Tanner BD, Lee X, Chen JY (2006) Overview of Chinaflux and evaluation of its eddy covariance measurement. Agric Forest Meteorol 137:125–137

    Article  Google Scholar 

  • Yu GR, Zhang LM, Sun XM, Fu YL, Wen XF, Wang QF, Li SG, Ren CY, Song X, Liu YF, Han SJ, Yan JH (2008) Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Chang Biol 14:2555–2571

    Article  Google Scholar 

  • Yuan WP, Luo YQ, Richardson AD, Oren R, Luyssaert S, Janssens IA, Ceulemans R, Zhou XH, Grunwald T, Aubinet M, Berhofer C, Baldocchi DD, Chen JQ, Dunn AL, Deforest JL, Dragoni D, Goldstein AH, Moors E, Munger JW, Monson RK, Suyker AE, Star G, Scott RL, Tenhunen J, Verma SB, Vesala T, Wofsy SC (2009) Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Chang Biol 15:2905–2920

    Article  Google Scholar 

  • Zhang YM, Zhou GY, Wen DZ, Zhang DQ, Zhang QM (2003) Dynamics of the Castanopsis Chinensis-schima Superba-cryptocarya Concinna community of monsoon evergreen broadleaved forest in Dinghushan nature reserve in lower subtropical China. Acta Phytoecol Sin 27:256–262 (in Chinese with English summary)

    Google Scholar 

  • Zhang L, Yu G, Sun X, Wen X, Ren C, Fu Y, Li Q, Li Z, Liu Y, Guan D, Yan J (2006) Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agric Forest Meteorol 137:176–187

    Article  Google Scholar 

  • Zhang YP, Tan ZH, Song QH, Yu GR, Sun XM (2010) Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest. Atmos Environ 44:3886–3893

    Article  CAS  Google Scholar 

  • Zhou GY, Yan JH (2001) The influences of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. Acta Ecol Sin 21:2002–2012 (in Chinese with English summary)

    Google Scholar 

  • Zhou GY, Liu SG, Li ZA, Zhang DQ, Tang XL, Zhou CY, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program (2011CB403202), Strategic Priority Research Program, CAS (grant no. X DA05050205), and Asia 3 Foresight Program (30721140307). We are also grateful for sustained support from the staff of the Dinghushan Forest Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Yan.

About this article

Cite this article

Yan, J., Liu, X., Tang, X. et al. Substantial amounts of carbon are sequestered during dry periods in an old-growth subtropical forest in South China. J For Res 18, 21–30 (2013). https://doi.org/10.1007/s10310-012-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-012-0363-0

Keywords

Navigation