Skip to main content
Log in

Carob pulp as raw material for production of the biocontrol agent P. agglomerans PBC-1

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Large-scale production has been the major obstacle to the success of many biopesticides. The spreading of microbial biocontrol agents against postharvest disease, as a safe and environmentally friendly alternative to synthetic fungicides, is quite dependent on their industrial mass production from low-cost raw materials. Considerable interest has been shown in using agricultural waste products and by-products from food industry as nitrogen and carbon sources. In this work, carob pulp aqueous extracts were used as carbon source in the production of the biocontrol agent Pantoea agglomerans PBC-1. Optimal sugar extraction was achieved at a solid/liquid ratio of 1:10 (w/v), at 25°C, for 1 h. Batch experiments were performed in shake flasks, at different concentrations and in stirred reactors at two initial inoculums concentrations, 106 and 107 cfu ml−1. The initial sugar concentration of 5 g l−1 allowed rapid growth (0.16 h−1) and high biomass productivity (0.28 g l−1 h−1) and was chosen as the value for use in stirred reactor experiments. After 22 and 32 h of fermentation the viable population reached was 3.2 × 109 and 6.2 × 109 cfu ml−1 in the fermenter inoculated at 106 cfu ml−1 and 2.7 × 109 and 6.7 × 109 cfu ml−1 in the bioreactor inoculated at 107 cfu ml−1. A 78% reduction of the pathogen incidence was achieved with PBC-1 at 1 × 108 cfu ml−1, grown in medium with carob extracts, on artificially wounded apples stored after 7 days at 25°C against P. expansum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abadias M, Teixidó N, Usall J, Viñas I (2003) Optimization of growth conditions of the postharvest biocontrol agent Candida sake CPA-1 in a lab-scale fermenter. J Appl Microbiol 95:301–309. doi:10.1046/j.1365-2672.2003.01976.x

    Article  CAS  PubMed  Google Scholar 

  2. Anselmo A, Cabral JMS, Novais JM (1989) The adsorption of Fusarium flocciferum spores on celite particles and their use in the degradation of phenol. Appl Microbiol Biotechnol 31:200–203. doi:10.1007/BF00262463

    Article  CAS  Google Scholar 

  3. Avallone R, Plessi M, Baraldi A, Monzani M (1997) Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates and tannins. J Food Compos Anal 10:166–172. doi:10.1006/jfca.1997.0528

    Article  CAS  Google Scholar 

  4. Ayaz FA, Torun H, Ayaz S, Correia PJ, Alaiz M, Sanz C, Gruz J, Strnad M (2007) Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): sugars, amino and organic acids, minerals and phenolic compounds. J Food Qual 30:1040–1055. doi:10.1111/j.1745-4557.2007.00176.x

    Google Scholar 

  5. Batlle I, Tous J (1997) Carob tree. Ceratonia siliqua L. promoting the conservation and use of underutilized and neglected crops. 17. Institute of Plant Genetics and Crop Plant Research. Gatersleben/International Plant Genetic Resources Institute, Rome

    Google Scholar 

  6. Biner B, Gubbuk H, Karhanb M, Aksub M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem 100:1453–1455. doi:10.1016/j.foodchem.2005.11.037

  7. Bonaterra A, Mari M, Casalimi L, Montesinos E (2003) Biological control of Monilinia laxa and Rhizopus stolonifer in postharvest of stone fruit by Pantoea agglomerans EPS125 and putative mechanisms of antagonism. Int J Food Microbiol 84:93–104. doi:10.1016/S0168-1605(02)00403-8

    PubMed  Google Scholar 

  8. Braun-Kiewnick A, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology 90:368–375

    Article  CAS  PubMed  Google Scholar 

  9. Choi M, Park Y (2003) Production of yeast biomass using waste Chinese cabbage. Biomass Bioenergy 25:221–226. doi:10.1016/S0961-9534(02)00194-0

    Google Scholar 

  10. Correia PJ, Martins-Loução MA (2005) The use of macronutrients and water in marginal mediterranean areas: the case of carob-tree. Filed Crops Res 91:1–6. doi:10.1016/j.fcr.2004.05.004

    Article  Google Scholar 

  11. Costa E, Teixidó N, Usall J, Atarés E, Viñas I (2001) Production of the biocontrol agent Pantoea agglomerans CPA-1 using commercial products and by-products. Appl Microbiol Biotechnol 56:367–371. doi:10.1007/s002530100666

    Article  CAS  PubMed  Google Scholar 

  12. Craig WJ, Nguyen TT (2006) Caffeine and theobromine levels in cocoa and carob products. J Food Sci 49:302–303. doi:10.1111/j.1365-2621.1984.tb13737.x

    Article  Google Scholar 

  13. Droby S (2006) Biological control of postharvest diseases of fruits and vegetables: difficulties and challenges. Phytopathol Pol 39:105–117

    Article  Google Scholar 

  14. Droby S (2009) Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol Technol 52:137–145. doi:10.1016/j.postharvbio.2008.11.009

    Article  Google Scholar 

  15. Eckert JW, Ogawa JM (1988) The chemical control of postharvest diseases deciduous fruits, berries, vegetables and root/tuber crops. Annu Rev Phytopathol 26:433–469. doi:10.1146/annurev.py.26.090188.002245

    Article  CAS  Google Scholar 

  16. Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths. Bioprocess Biosyst Eng 26:231–238. doi:10.1007/s00449-004-0353-5

    Google Scholar 

  17. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol Adv 27:153–176. doi:10.1016/j.biotechadv.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  18. Gomes N, Aguedo M, Teixeira J, Belo I (2007) Oxygen mass transfer in a biphasic medium: influence on the biotransformation of methyl ricinoleate into γ-decalactone by the yeast Yarrowia lipolytica. Biochem Eng J 35:380–386. doi:10.1016/j.bej.2007.02.002

    Article  CAS  Google Scholar 

  19. Henis Y, Tagari H, Volcani R (1964) Effect of water extracts of carob pods tannic acid their derivatives on morphology growth of microorganisms. Appl Environ Microbiol 12:204–209

    CAS  Google Scholar 

  20. Hofstein R, Fridlender B, Chalutz E, Droby S (1994) Large scale production and pilot testing of biocontrol agents of postharvest diseases. In: Wilson CL, Wisniewski ME (eds) Biological control of postharvest diseases of fruits and vegetables-theory and practice. CRC, Boca Raton, pp 89–100

    Google Scholar 

  21. Hsieh TF, Huang HC, Erickson RS (2005) Biological control of bacterial wilt of bean using a bacterial endophyte, Pantoea agglomerans. J Phytopathol 153:608–614

    Article  Google Scholar 

  22. Janisiewicz WJ (1998) Biocontrol of postharvest diseases of temperate fruits. Challenges and opportunities. In: Boland G, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 171–198

    Google Scholar 

  23. Janisiewicz WJ, Korsten L (2002) Biological control of postharvest disease on fruits. Annu Rev Phytopathol 40:411–441. doi:10.1146/annurev.phyto.40.120401.130158

    Article  CAS  PubMed  Google Scholar 

  24. Janisiewicz WJ, Tworkoski TJ, Sharer C (2000) Characterizing the mechanism of biological control postharvest disease on fruits a simple method to study competition for nutrient. Phytopatol 90:1196–1200

    Article  CAS  Google Scholar 

  25. Makris DP, Kefalas P (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42:105–108

    CAS  Google Scholar 

  26. Manso T, Nunes C, Raposo S, Lima-Costa ME (2010) Production of the biocontrol agent Pantoea agglomerans PBC-1 in a stirred tank reactor by batch and fed-batch cultures. World J Microbiol Biotechnol 26:725–735. doi:10.1007/s11274-009-0229-6

    Article  CAS  Google Scholar 

  27. Nagy E, Feczkó T, Koroknai B (2007) Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chem Eng Sci 62:7391–7398. doi:10.1016/j.ces.2007.08.064

    Article  CAS  Google Scholar 

  28. Nunes C, Usall J, Teixidó N, Viñas I (2001) Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. Int J Food Microbiol 70:53–61

    Article  CAS  PubMed  Google Scholar 

  29. Nunes C, Usall J, Teixidó N, Fons E, Viñas I (2002) Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. J Appl Microbiol 92:247–255

    Article  CAS  PubMed  Google Scholar 

  30. Nunes C, Manso T, Lima-Costa ME (2009) Postharvest biological control of citrus fruit. Tree For Sci Biotechnol 3:116–126

    Google Scholar 

  31. Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC (2006) Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind Eng Chem Res 45:4355–4363. doi:10.1021/ie051348b

    Article  CAS  Google Scholar 

  32. Peighami-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K (2009) Interaction of different media on production and biocontrol efficacy of Pseudomonas flurescens P-35 and Bacillus subtilis B-3 against grey mould apple. J Plant Pathol 91:65–70

    Google Scholar 

  33. Peris-Tortajada M (2000) HPLC determination of carbohydrates in food. In: Nollet LML (ed) Food analyses by HPLC, 2nd edn. Marcel Dekker, Inc, New York, pp 287–302

    Google Scholar 

  34. Petit MD, Pinilla JM (1995) Production and purification of a sugar syrup from carob pods. Food Sci Technol-Lebensmittel-Wissenschaft Technologie 28:145–152. doi:10.1016/S0023-6438(95)80027-1

    CAS  Google Scholar 

  35. Raposo S, Pardao JM, Diaz I, Lima-Costa ME (2009) Kinetic modelling of bioethanol production using agro-industrial by-products. Int J Energy Environ 1(3):1–8

    Google Scholar 

  36. Roseiro JC, Girio FM, Colaço MTA (1991) The influence of storage stability on the use of carob pulp aqueous extract as raw material for fermentation processes. Food Sci Technol-Lebensmittel-Wissenschaft Technologie 24:508–512

    CAS  Google Scholar 

  37. Roseiro JC, Girio FM, Collaço MTA (1991) Yield improvements in carob sugar extraction. Process Biochem 26:179–182

    Article  CAS  Google Scholar 

  38. Roukas T (1996) Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. J Food Eng 27:87–96. doi:10.1016/0260-8774(94)00076-L

    Article  Google Scholar 

  39. Roukas T (1999) Citric acid production from carob pod by solid-state fermentation. Enzyme Microbial Technol 24:54–59. doi:10.1016/S0141-0229(98)00092-1

    Article  CAS  Google Scholar 

  40. Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J 25:1–6. doi:10.1016/j.bej.2005.01.022

    Article  CAS  Google Scholar 

  41. Spots RA, Cervantes LA (1986) Population pathogenecity and benomyl resistant of Botrytis spp. Penicillium spp. and Mucor piriformis in packing houses. Plant Dis 70:106–108. doi:10.1094/PD-70-106

    Article  Google Scholar 

  42. Teixidó N, Usall J, Nunes C, Torres R, Abadias M and Viñas I (2009) Preharvest strategies to control postharvest diseases in fruits. In: Prusky D, Gullino ML (eds) Post-harvest pathology. Plant pathology in the 21st century, vol 2. Springer, New York, pp 89–106. doi:10.1007/978-1-4020-8930-5_7

  43. Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. Penicillium spp. and Mucor piriformis in packing houses. Environ Exp Bot 64:21–32. doi:10.1016/j.envexpbot.2007.12.009

    Article  Google Scholar 

  44. Turhan I, Tetik N, Aksu M, Karhan M, Certel M (2006) Liquid–solid extraction of soluble solids and total phenolic compounds of carob bean (Ceratonia siliqua L.). J Food Process Eng 29:498–507. doi:10.1111/j.1745-4530.2006.00078.x

    Google Scholar 

  45. Usall J, Teixidó N, Abadias M, Torres R, Cañamas T, Viñas I (2009) Improving formulation of biocontrol agents manipulating production process. In: Prusky D, Gullino ML (eds) Post-harvest pathology. Plant pathology in the 21st century, vol 2. Springer, New York, pp 149–169. doi:10.1007/978-1-4020-8930-5_11

  46. Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Industrial wastewaters and dewatered sludge: rich nutrient source for production and formulation of biocontrol agent, Trichoderma viride. World J Microbiol Biotechnol 23:1695–1703. doi:10.1007/s11274-007-9417-4

    Article  CAS  Google Scholar 

  47. Wisniewski ME, Wilson CL (1992) Biological control of postharvest diseases of fruits and vegetables: recent advances. HortScience 27:94–98

    Google Scholar 

  48. Yousif AK, Alghzawi HM (2000) Processing and characterization of carob powder. Food Chem 69:283–287. doi:10.1016/S0308-8146(99)00265-4

    Article  CAS  Google Scholar 

  49. Zhang Z, Jin B, Kelly JM (2007) Production of lactic and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World J Microbiol Biotechnol 23:229–236. doi:10.1007/s11274-006-9218-1

    Article  CAS  Google Scholar 

  50. Zimmermann HF, Anderlei T, Büchs J, Binder M (2006) Oxygen limitation is a pitfall during screening for industrial strains. Appl Microbiol Biotechnol 72:1157–1160. doi:10.1007/s00253-006-0414-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was conducted in the frame of a doctorate scholarship awarded to Teresa Manso (SFHR/BD/21922/2005) and supported by the project POCTI/AGR/45098/2002, by the Fundação para a Ciência e a Tecnologia, Ministério da Ciência e Superior. We also thank AGRUPA (Industrial Association of Carob and Almond Producers, C.R.L.) for kindly supplying carob kibbles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Emília Lima-Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manso, T., Nunes, C., Raposo, S. et al. Carob pulp as raw material for production of the biocontrol agent P. agglomerans PBC-1. J Ind Microbiol Biotechnol 37, 1145–1155 (2010). https://doi.org/10.1007/s10295-010-0762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0762-1

Keywords

Navigation