Skip to main content
Log in

Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Saccharomyces spp. are widely used for ethanologenic fermentations, however yeast metabolic rate and viability decrease as ethanol accumulates during fermentation, compromising ethanol yield. Improving ethanol tolerance in yeast should, therefore, reduce the impact of ethanol toxicity on fermentation performance. The purpose of the current work was to generate and characterise ethanol-tolerant yeast mutants by subjecting mutagenised and non-mutagenised populations of Saccharomyces cerevisiae W303-1A to adaptive evolution using ethanol stress as a selection pressure. Mutants CM1 (chemically mutagenised) and SM1 (spontaneous) had increased acclimation and growth rates when cultivated in sub-lethal ethanol concentrations, and their survivability in lethal ethanol concentrations was considerably improved compared with the parent strain. The mutants utilised glucose at a higher rate than the parent in the presence of ethanol and an initial glucose concentration of 20 g l−1. At a glucose concentration of 100 g l−1, SM1 had the highest glucose utilisation rate in the presence or absence of ethanol. The mutants produced substantially more glycerol than the parent and, although acetate was only detectable in ethanol-stressed cultures, both mutants produced more acetate than the parent. It is suggested that the increased ethanol tolerance of the mutants is due to their elevated glycerol production rates and the potential of this to increase the ratio of oxidised and reduced forms of nicotinamide adenine dinucleotide (NAD+/NADH) in an ethanol-compromised cell, stimulating glycolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aarnio TH, Suihko ML, Kauppinen VS (1991) Isolation of acetic acid tolerant baker’s yeast variants in a turbidostat. Appl Biochem Biotechnol 27:55–63

    Article  Google Scholar 

  2. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  3. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  PubMed  Google Scholar 

  4. Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698

    Article  CAS  PubMed  Google Scholar 

  5. Barber AR, Vrieskoop F, Pamment NB (2002) Effect of acetaldehyde on Saccharomyces cerevisiae exposed to range of chemical and environmental stresses. Enzyme Microbial Technol 30:240–250

    Article  CAS  Google Scholar 

  6. Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D (2001) Glycerol: a neglected variable in metabolic processes. Bioessays 23:534–542

    Article  CAS  PubMed  Google Scholar 

  7. Brown SW, Oliver SG (1982) Isolation of ethanol-tolerant mutants of yeast by continuous selection. Eur J Appl Microbiol Biotechnol 16:119–122

    Article  Google Scholar 

  8. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  9. Cakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Article  CAS  PubMed  Google Scholar 

  10. Chandler M, Stanley GA, Rogers P, Chambers P (2004) A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Annal Microbiol 54:427–454

    CAS  Google Scholar 

  11. De Barros Lopes M, Rehman AU, Gockowiak H, Heinrich AJ, Langridge P, Henschke PA (2000) Fermentation properties of a wine yeast overexpressing the Saccharomyces cerevisiae glycerol 3-phosphate dehydrogenase gene (GPD2). Aust J Grape Wine Res 6:208–215

    Article  Google Scholar 

  12. Dinh TN, Nagahisa K, Hirasawa T, Furusawa C, Shimizu H (2008) Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE 3:e2623

    Article  PubMed  Google Scholar 

  13. Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96:9721–9726

    Article  CAS  PubMed  Google Scholar 

  14. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2004) Comprehensive gene expression analysis of the response to straight-chain alcohols in Saccharomyces cerevisiae using cDNA microarray. J Appl Microbiol 97:57–67

    Article  CAS  PubMed  Google Scholar 

  15. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750

    Article  CAS  PubMed  Google Scholar 

  16. Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487

    Article  CAS  PubMed  Google Scholar 

  17. Jimenez J, Benitez T (1988) Selection of ethanol-tolerant yeast hybrids in pH-regulated continuous culture. Appl Environ Microbiol 54:917–922

    CAS  PubMed  Google Scholar 

  18. Kurita O, Nishida Y (1999) Involvement of mitochondrial aldehyde dehydrogenase ALD5 in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae. FEMS Microbiol Lett 181:281–287

    Article  CAS  PubMed  Google Scholar 

  19. Matsutani K, Fukuda Y, Mutrata K, Kimura A, Yajima N (1992) Adaptation mechanism of yeast to extreme environments: construction of salt-tolerance mutants of the yeast Saccharomyces cerevisiae. J Ferm Bioeng 73:228–229

    Article  Google Scholar 

  20. Michnick S, Roustan JL, Remize F, Barre P, Dequin S (1997) Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13:783–793

    Article  CAS  PubMed  Google Scholar 

  21. Nevoigt E, Stahl U (1996) Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12:1331–1337

    Article  CAS  PubMed  Google Scholar 

  22. Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in By-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  PubMed  Google Scholar 

  23. Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    Article  CAS  PubMed  Google Scholar 

  24. Stanley GA, Douglas NG, Every EJ, Tzanatos T, Pamment NB (1993) Inhibition and stimulation of yeast growth by acetaldehyde. Biotechnol Lett 15:1199–1204

    Article  CAS  Google Scholar 

  25. Stanley GA, Hahn-Hägerdal B (2009) Fuel ethanol production from lignocellulosic raw materials using recombinant yeasts. In: Vertes A, Qureshi N, Yukawa H, Blaschek HP (eds) Biomass to Biofuels. John Wiley & Sons, Chichester (in press)

  26. Stanley GA, Hobley TJ, Pamment NB (1997) Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks. Biotechnol Bioeng 53:71–78

    Article  CAS  PubMed  Google Scholar 

  27. Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    Article  CAS  PubMed  Google Scholar 

  28. Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270

    CAS  PubMed  Google Scholar 

  29. van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359

    Article  PubMed  Google Scholar 

  30. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:2402–2407

    Article  CAS  PubMed  Google Scholar 

  31. Vriesekoop F, Barber AR, Pamment NB (2007) Acetaldehyde mediates growth stimulation of ethanol-stressed Saccharomyces cerevisiae: evidence of a redox-driven mechanism. Biotechnol Lett 29:1099–1103

    Article  CAS  PubMed  Google Scholar 

  32. Vriesekoop F, Pamment NB (2005) Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminate the ethanol-induced lag phase in Saccharomyces cerevisiae. Lett Appl Microbiol 41:424–427

    Article  CAS  PubMed  Google Scholar 

  33. Wati L, Dhamija SS, Singh D, Nigam P, Marchant R (1996) Characterization of genetic control of thermotolerance in mutants of Saccharomyces cerevisiae. Gen Eng Biotechnol 16:19–28

    Google Scholar 

  34. Yazawa H, Iwahashi H, Uemura H (2007) Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24:551–560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Foster’s Group Ltd. and The Australian Wine Research Institute for project support. The authors also thank the Australian Government for providing a Commonwealth Postgraduate Award to support Dragana Stanley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant A. Stanley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, D., Fraser, S., Chambers, P.J. et al. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae . J Ind Microbiol Biotechnol 37, 139–149 (2010). https://doi.org/10.1007/s10295-009-0655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0655-3

Keywords

Navigation