Skip to main content
Log in

Cellules souches du cancer du sein : prendre le cancer à la racine

Breast cancer stem cells: a way to uproot cancer

  • Mise au Point / Update
  • Published:
Oncologie

Abstract

In cancer stem cell (CSC) hypothesis, tumors are organized in a hierarchical model with CSC at the top of the hierarchy. CSCs display both stem cell properties (self-renewal and differentiation) and specific tumoral properties (tumorigenicity, metastatic capacity, resistance to conventional therapies). Recent works on breast cancer allow CSCs isolation and help deciphering CSC biology and targeting with specific therapies. In clinical trials, CSC biology has to be taken into account and the criteria to judge therapeutic efficiency have to change.

Résumé

Selon le concept des cellules souches cancéreuses (CSC), la tumeur est organisée selon un modèle hiérarchique au sommet duquel on retrouve la CSC. Elle est dotée à la fois de propriétés communes aux autres cellules souches (capacité d’autorenouvellement et de différenciation) et de propriétés propres aux CSC (tumorigénicité, capacité à former des métastases, résistance aux traitements conventionnels). Les avancées récentes dans le cadre du cancer du sein ont permis de les isoler afin de mieux comprendre leurs spécificités et les cibler de manière plus efficace avec différentes thérapeutiques. Dans les essais cliniques, l’introduction de cette notion biologique ainsi que de thérapeutiques ciblant les CSC nécessite une adaptation des critères de jugement habituels et notamment du critère RECIST, basé essentiellement sur la fonte tumorale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Al Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983–3988

    Article  Google Scholar 

  2. Armstrong L, Stojkovic M, Dimmick I, et al. (2004) Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 22: 1142–1151

    Article  PubMed  Google Scholar 

  3. Balic M, Dandachi N, Lin H, et al. (2005) Cancer metastasis: advances in the detection and characterization of disseminated tumour cells facilitate clinical translation. Natl Med J India 18: 250–255

    PubMed  Google Scholar 

  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737

    Article  PubMed  CAS  Google Scholar 

  5. Bryan M, Pulte ED, Toomey KC, et al. (2011) A pilot phase II trial of all-trans retinoic acid (Vesanoid) and paclitaxel (Taxol) in patients with recurrent or metastatic breast cancer. Invest New Drugs 29: 1482–1487

    Article  PubMed  CAS  Google Scholar 

  6. Budd GT, Adamson PC, Gupta M, et al. (1998) Phase I/II trial of all-trans retinoic acid and tamoxifen in patients with advanced breast cancer. Clin Cancer Res 4: 635–642

    PubMed  CAS  Google Scholar 

  7. Charafe-Jauffret E, Ginestier C, Iovino F, et al. (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16: 45–55

    Article  PubMed  CAS  Google Scholar 

  8. Charafe-Jauffret E, Ginestier C, Iovino F, et al. (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69: 1302–1313

    Article  PubMed  CAS  Google Scholar 

  9. Conley SJ, Gheordunescu E, Kakarala P, et al. (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A 109: 2784–2789

    Article  PubMed  CAS  Google Scholar 

  10. Creighton CJ, Li X, Landis M, et al. (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106: 13820–13825

    Article  PubMed  CAS  Google Scholar 

  11. Dontu G, Jackson KW, McNicholas E, et al. (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6: R605–R615

    Article  PubMed  CAS  Google Scholar 

  12. Duester G (2000) Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem 267: 4315–4324

    Article  PubMed  CAS  Google Scholar 

  13. Ginestier C, Hur MH, Charafe-Jauffret E, et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567

    Article  PubMed  CAS  Google Scholar 

  14. Ginestier C, Liu S, Diebel ME, et al. (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120: 485–497

    Article  PubMed  CAS  Google Scholar 

  15. Ginestier C, Monville F, Wicinski J, et al. (2012) Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target. Stem Cells

  16. Ginestier C, Wicinski J, Cervera N, et al. (2009) Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8: 3297–3302

    Article  PubMed  CAS  Google Scholar 

  17. Hess DA, Meyerrose TE, Wirthlin L, et al. (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104: 1648–1655

    Article  PubMed  CAS  Google Scholar 

  18. Kondratyev M, Kreso A, Hallett RM, et al. (2012) Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene 31: 93–103

    Article  PubMed  CAS  Google Scholar 

  19. Korkaya H, Paulson A, Charafe-Jauffret E, et al. (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/betacatenin signaling. PLoS Biol 7: e1000121

    Article  PubMed  Google Scholar 

  20. Lagadec C, Vlashi E, Della DL, et al. (2012) Radiation-induced reprogramming of breast cancer cells. Stem Cells 30: 833–844

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Lewis MT, Huang J, et al. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100: 672–679

    Article  PubMed  CAS  Google Scholar 

  22. Lim E, Vaillant F, Wu D, et al. (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: 907–913

    Article  PubMed  CAS  Google Scholar 

  23. Magnifico A, Albano L, Campaner S, et al. (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15: 2010–2021

    Article  PubMed  CAS  Google Scholar 

  24. Molyneux G, Geyer FC, Magnay FA, et al. (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7: 403–417

    Article  PubMed  CAS  Google Scholar 

  25. Munster PN, Troso-Sandoval T, Rosen N, et al. (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61: 8492–847

    PubMed  CAS  Google Scholar 

  26. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98: 1777–1785

    Article  PubMed  Google Scholar 

  27. Ponti D, Costa A, Zaffaroni N, et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506–5511

    Article  PubMed  CAS  Google Scholar 

  28. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434: 843–850

    Article  PubMed  CAS  Google Scholar 

  29. Sansone P, Storci G, Tavolari S, et al. (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117: 3988–4002

    Article  PubMed  CAS  Google Scholar 

  30. Therasse P, Arbuck SG, Eisenhauer EA, et al. (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205–216

    Article  PubMed  CAS  Google Scholar 

  31. Tsai HC, Li H, Van NL, et al. (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Stem cells, cancer, and cancer stem cells. Cancer Cell 21: 430–446

    CAS  Google Scholar 

  32. Visvader JE. (2011) Cells of origin in cancer. Nature 469: 314–322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Launay.

About this article

Cite this article

Launay, S.G., Ginestier, C., Birnbaum, D. et al. Cellules souches du cancer du sein : prendre le cancer à la racine. Oncologie 14, 543–549 (2012). https://doi.org/10.1007/s10269-012-2198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-012-2198-x

Keywords

Mots clés

Navigation